/* * Watchdog support on powerpc systems. * * Copyright 2017, IBM Corporation. * * This uses code from arch/sparc/kernel/nmi.c and kernel/watchdog.c */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * The watchdog has a simple timer that runs on each CPU, once per timer * period. This is the heartbeat. * * Then there are checks to see if the heartbeat has not triggered on a CPU * for the panic timeout period. Currently the watchdog only supports an * SMP check, so the heartbeat only turns on when we have 2 or more CPUs. * * This is not an NMI watchdog, but Linux uses that name for a generic * watchdog in some cases, so NMI gets used in some places. */ static cpumask_t wd_cpus_enabled __read_mostly; static u64 wd_panic_timeout_tb __read_mostly; /* timebase ticks until panic */ static u64 wd_smp_panic_timeout_tb __read_mostly; /* panic other CPUs */ static u64 wd_timer_period_ms __read_mostly; /* interval between heartbeat */ static DEFINE_PER_CPU(struct timer_list, wd_timer); static DEFINE_PER_CPU(u64, wd_timer_tb); /* * These are for the SMP checker. CPUs clear their pending bit in their * heartbeat. If the bitmask becomes empty, the time is noted and the * bitmask is refilled. * * All CPUs clear their bit in the pending mask every timer period. * Once all have cleared, the time is noted and the bits are reset. * If the time since all clear was greater than the panic timeout, * we can panic with the list of stuck CPUs. * * This will work best with NMI IPIs for crash code so the stuck CPUs * can be pulled out to get their backtraces. */ static unsigned long __wd_smp_lock; static cpumask_t wd_smp_cpus_pending; static cpumask_t wd_smp_cpus_stuck; static u64 wd_smp_last_reset_tb; static inline void wd_smp_lock(unsigned long *flags) { /* * Avoid locking layers if possible. * This may be called from low level interrupt handlers at some * point in future. */ raw_local_irq_save(*flags); hard_irq_disable(); /* Make it soft-NMI safe */ while (unlikely(test_and_set_bit_lock(0, &__wd_smp_lock))) { raw_local_irq_restore(*flags); spin_until_cond(!test_bit(0, &__wd_smp_lock)); raw_local_irq_save(*flags); hard_irq_disable(); } } static inline void wd_smp_unlock(unsigned long *flags) { clear_bit_unlock(0, &__wd_smp_lock); raw_local_irq_restore(*flags); } static void wd_lockup_ipi(struct pt_regs *regs) { pr_emerg("Watchdog CPU:%d Hard LOCKUP\n", raw_smp_processor_id()); print_modules(); print_irqtrace_events(current); if (regs) show_regs(regs); else dump_stack(); if (hardlockup_panic) nmi_panic(regs, "Hard LOCKUP"); } static void set_cpumask_stuck(const struct cpumask *cpumask, u64 tb) { cpumask_or(&wd_smp_cpus_stuck, &wd_smp_cpus_stuck, cpumask); cpumask_andnot(&wd_smp_cpus_pending, &wd_smp_cpus_pending, cpumask); if (cpumask_empty(&wd_smp_cpus_pending)) { wd_smp_last_reset_tb = tb; cpumask_andnot(&wd_smp_cpus_pending, &wd_cpus_enabled, &wd_smp_cpus_stuck); } } static void set_cpu_stuck(int cpu, u64 tb) { set_cpumask_stuck(cpumask_of(cpu), tb); } static void watchdog_smp_panic(int cpu, u64 tb) { unsigned long flags; int c; wd_smp_lock(&flags); /* Double check some things under lock */ if ((s64)(tb - wd_smp_last_reset_tb) < (s64)wd_smp_panic_timeout_tb) goto out; if (cpumask_test_cpu(cpu, &wd_smp_cpus_pending)) goto out; if (cpumask_weight(&wd_smp_cpus_pending) == 0) goto out; pr_emerg("Watchdog CPU:%d detected Hard LOCKUP other CPUS:%*pbl\n", cpu, cpumask_pr_args(&wd_smp_cpus_pending)); /* * Try to trigger the stuck CPUs. */ for_each_cpu(c, &wd_smp_cpus_pending) { if (c == cpu) continue; smp_send_nmi_ipi(c, wd_lockup_ipi, 1000000); } smp_flush_nmi_ipi(1000000); /* Take the stuck CPUs out of the watch group */ set_cpumask_stuck(&wd_smp_cpus_pending, tb); wd_smp_unlock(&flags); printk_safe_flush(); /* * printk_safe_flush() seems to require another print * before anything actually goes out to console. */ if (sysctl_hardlockup_all_cpu_backtrace) trigger_allbutself_cpu_backtrace(); if (hardlockup_panic) nmi_panic(NULL, "Hard LOCKUP"); return; out: wd_smp_unlock(&flags); } static void wd_smp_clear_cpu_pending(int cpu, u64 tb) { if (!cpumask_test_cpu(cpu, &wd_smp_cpus_pending)) { if (unlikely(cpumask_test_cpu(cpu, &wd_smp_cpus_stuck))) { unsigned long flags; pr_emerg("Watchdog CPU:%d became unstuck\n", cpu); wd_smp_lock(&flags); cpumask_clear_cpu(cpu, &wd_smp_cpus_stuck); wd_smp_unlock(&flags); } return; } cpumask_clear_cpu(cpu, &wd_smp_cpus_pending); if (cpumask_empty(&wd_smp_cpus_pending)) { unsigned long flags; wd_smp_lock(&flags); if (cpumask_empty(&wd_smp_cpus_pending)) { wd_smp_last_reset_tb = tb; cpumask_andnot(&wd_smp_cpus_pending, &wd_cpus_enabled, &wd_smp_cpus_stuck); } wd_smp_unlock(&flags); } } static void watchdog_timer_interrupt(int cpu) { u64 tb = get_tb(); per_cpu(wd_timer_tb, cpu) = tb; wd_smp_clear_cpu_pending(cpu, tb); if ((s64)(tb - wd_smp_last_reset_tb) >= (s64)wd_smp_panic_timeout_tb) watchdog_smp_panic(cpu, tb); } void soft_nmi_interrupt(struct pt_regs *regs) { unsigned long flags; int cpu = raw_smp_processor_id(); u64 tb; if (!cpumask_test_cpu(cpu, &wd_cpus_enabled)) return; nmi_enter(); tb = get_tb(); if (tb - per_cpu(wd_timer_tb, cpu) >= wd_panic_timeout_tb) { per_cpu(wd_timer_tb, cpu) = tb; wd_smp_lock(&flags); if (cpumask_test_cpu(cpu, &wd_smp_cpus_stuck)) { wd_smp_unlock(&flags); goto out; } set_cpu_stuck(cpu, tb); pr_emerg("Watchdog CPU:%d Hard LOCKUP\n", cpu); print_modules(); print_irqtrace_events(current); if (regs) show_regs(regs); else dump_stack(); wd_smp_unlock(&flags); if (sysctl_hardlockup_all_cpu_backtrace) trigger_allbutself_cpu_backtrace(); if (hardlockup_panic) nmi_panic(regs, "Hard LOCKUP"); } if (wd_panic_timeout_tb < 0x7fffffff) mtspr(SPRN_DEC, wd_panic_timeout_tb); out: nmi_exit(); } static void wd_timer_reset(unsigned int cpu, struct timer_list *t) { t->expires = jiffies + msecs_to_jiffies(wd_timer_period_ms); if (wd_timer_period_ms > 1000) t->expires = __round_jiffies_up(t->expires, cpu); add_timer_on(t, cpu); } static void wd_timer_fn(unsigned long data) { struct timer_list *t = this_cpu_ptr(&wd_timer); int cpu = smp_processor_id(); watchdog_timer_interrupt(cpu); wd_timer_reset(cpu, t); } void arch_touch_nmi_watchdog(void) { unsigned long ticks = tb_ticks_per_usec * wd_timer_period_ms * 1000; int cpu = smp_processor_id(); if (get_tb() - per_cpu(wd_timer_tb, cpu) >= ticks) watchdog_timer_interrupt(cpu); } EXPORT_SYMBOL(arch_touch_nmi_watchdog); static void start_watchdog_timer_on(unsigned int cpu) { struct timer_list *t = per_cpu_ptr(&wd_timer, cpu); per_cpu(wd_timer_tb, cpu) = get_tb(); setup_pinned_timer(t, wd_timer_fn, 0); wd_timer_reset(cpu, t); } static void stop_watchdog_timer_on(unsigned int cpu) { struct timer_list *t = per_cpu_ptr(&wd_timer, cpu); del_timer_sync(t); } static int start_wd_on_cpu(unsigned int cpu) { unsigned long flags; if (cpumask_test_cpu(cpu, &wd_cpus_enabled)) { WARN_ON(1); return 0; } if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED)) return 0; if (watchdog_suspended) return 0; if (!cpumask_test_cpu(cpu, &watchdog_cpumask)) return 0; wd_smp_lock(&flags); cpumask_set_cpu(cpu, &wd_cpus_enabled); if (cpumask_weight(&wd_cpus_enabled) == 1) { cpumask_set_cpu(cpu, &wd_smp_cpus_pending); wd_smp_last_reset_tb = get_tb(); } wd_smp_unlock(&flags); start_watchdog_timer_on(cpu); return 0; } static int stop_wd_on_cpu(unsigned int cpu) { unsigned long flags; if (!cpumask_test_cpu(cpu, &wd_cpus_enabled)) return 0; /* Can happen in CPU unplug case */ stop_watchdog_timer_on(cpu); wd_smp_lock(&flags); cpumask_clear_cpu(cpu, &wd_cpus_enabled); wd_smp_unlock(&flags); wd_smp_clear_cpu_pending(cpu, get_tb()); return 0; } static void watchdog_calc_timeouts(void) { wd_panic_timeout_tb = watchdog_thresh * ppc_tb_freq; /* Have the SMP detector trigger a bit later */ wd_smp_panic_timeout_tb = wd_panic_timeout_tb * 3 / 2; /* 2/5 is the factor that the perf based detector uses */ wd_timer_period_ms = watchdog_thresh * 1000 * 2 / 5; } void watchdog_nmi_reconfigure(void) { int cpu; watchdog_calc_timeouts(); for_each_cpu(cpu, &wd_cpus_enabled) stop_wd_on_cpu(cpu); for_each_cpu_and(cpu, cpu_online_mask, &watchdog_cpumask) start_wd_on_cpu(cpu); } /* * This runs after lockup_detector_init() which sets up watchdog_cpumask. */ static int __init powerpc_watchdog_init(void) { int err; watchdog_calc_timeouts(); err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/watchdog:online", start_wd_on_cpu, stop_wd_on_cpu); if (err < 0) pr_warn("Watchdog could not be initialized"); return 0; } arch_initcall(powerpc_watchdog_init); static void handle_backtrace_ipi(struct pt_regs *regs) { nmi_cpu_backtrace(regs); } static void raise_backtrace_ipi(cpumask_t *mask) { unsigned int cpu; for_each_cpu(cpu, mask) { if (cpu == smp_processor_id()) handle_backtrace_ipi(NULL); else smp_send_nmi_ipi(cpu, handle_backtrace_ipi, 1000000); } } void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self) { nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_backtrace_ipi); }