/* * Copyright (C) 2010 SUSE Linux Products GmbH. All rights reserved. * * Authors: * Alexander Graf * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include /* #define DEBUG_MMU */ /* #define DEBUG_SR */ #ifdef DEBUG_MMU #define dprintk_mmu(a, ...) printk(KERN_INFO a, __VA_ARGS__) #else #define dprintk_mmu(a, ...) do { } while(0) #endif #ifdef DEBUG_SR #define dprintk_sr(a, ...) printk(KERN_INFO a, __VA_ARGS__) #else #define dprintk_sr(a, ...) do { } while(0) #endif #if PAGE_SHIFT != 12 #error Unknown page size #endif #ifdef CONFIG_SMP #error XXX need to grab mmu_hash_lock #endif #ifdef CONFIG_PTE_64BIT #error Only 32 bit pages are supported for now #endif static ulong htab; static u32 htabmask; static void invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte) { volatile u32 *pteg; dprintk_mmu("KVM: Flushing SPTE: 0x%llx (0x%llx) -> 0x%llx\n", pte->pte.eaddr, pte->pte.vpage, pte->host_va); pteg = (u32*)pte->slot; pteg[0] = 0; asm volatile ("sync"); asm volatile ("tlbie %0" : : "r" (pte->pte.eaddr) : "memory"); asm volatile ("sync"); asm volatile ("tlbsync"); pte->host_va = 0; if (pte->pte.may_write) kvm_release_pfn_dirty(pte->pfn); else kvm_release_pfn_clean(pte->pfn); } void kvmppc_mmu_pte_flush(struct kvm_vcpu *vcpu, ulong guest_ea, ulong ea_mask) { int i; dprintk_mmu("KVM: Flushing %d Shadow PTEs: 0x%x & 0x%x\n", vcpu->arch.hpte_cache_offset, guest_ea, ea_mask); BUG_ON(vcpu->arch.hpte_cache_offset > HPTEG_CACHE_NUM); guest_ea &= ea_mask; for (i = 0; i < vcpu->arch.hpte_cache_offset; i++) { struct hpte_cache *pte; pte = &vcpu->arch.hpte_cache[i]; if (!pte->host_va) continue; if ((pte->pte.eaddr & ea_mask) == guest_ea) { invalidate_pte(vcpu, pte); } } /* Doing a complete flush -> start from scratch */ if (!ea_mask) vcpu->arch.hpte_cache_offset = 0; } void kvmppc_mmu_pte_vflush(struct kvm_vcpu *vcpu, u64 guest_vp, u64 vp_mask) { int i; dprintk_mmu("KVM: Flushing %d Shadow vPTEs: 0x%llx & 0x%llx\n", vcpu->arch.hpte_cache_offset, guest_vp, vp_mask); BUG_ON(vcpu->arch.hpte_cache_offset > HPTEG_CACHE_NUM); guest_vp &= vp_mask; for (i = 0; i < vcpu->arch.hpte_cache_offset; i++) { struct hpte_cache *pte; pte = &vcpu->arch.hpte_cache[i]; if (!pte->host_va) continue; if ((pte->pte.vpage & vp_mask) == guest_vp) { invalidate_pte(vcpu, pte); } } } void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end) { int i; dprintk_mmu("KVM: Flushing %d Shadow pPTEs: 0x%llx & 0x%llx\n", vcpu->arch.hpte_cache_offset, pa_start, pa_end); BUG_ON(vcpu->arch.hpte_cache_offset > HPTEG_CACHE_NUM); for (i = 0; i < vcpu->arch.hpte_cache_offset; i++) { struct hpte_cache *pte; pte = &vcpu->arch.hpte_cache[i]; if (!pte->host_va) continue; if ((pte->pte.raddr >= pa_start) && (pte->pte.raddr < pa_end)) { invalidate_pte(vcpu, pte); } } } struct kvmppc_pte *kvmppc_mmu_find_pte(struct kvm_vcpu *vcpu, u64 ea, bool data) { int i; u64 guest_vp; guest_vp = vcpu->arch.mmu.ea_to_vp(vcpu, ea, false); for (i=0; iarch.hpte_cache_offset; i++) { struct hpte_cache *pte; pte = &vcpu->arch.hpte_cache[i]; if (!pte->host_va) continue; if (pte->pte.vpage == guest_vp) return &pte->pte; } return NULL; } static int kvmppc_mmu_hpte_cache_next(struct kvm_vcpu *vcpu) { if (vcpu->arch.hpte_cache_offset == HPTEG_CACHE_NUM) kvmppc_mmu_pte_flush(vcpu, 0, 0); return vcpu->arch.hpte_cache_offset++; } /* We keep 512 gvsid->hvsid entries, mapping the guest ones to the array using * a hash, so we don't waste cycles on looping */ static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid) { return (u16)(((gvsid >> (SID_MAP_BITS * 7)) & SID_MAP_MASK) ^ ((gvsid >> (SID_MAP_BITS * 6)) & SID_MAP_MASK) ^ ((gvsid >> (SID_MAP_BITS * 5)) & SID_MAP_MASK) ^ ((gvsid >> (SID_MAP_BITS * 4)) & SID_MAP_MASK) ^ ((gvsid >> (SID_MAP_BITS * 3)) & SID_MAP_MASK) ^ ((gvsid >> (SID_MAP_BITS * 2)) & SID_MAP_MASK) ^ ((gvsid >> (SID_MAP_BITS * 1)) & SID_MAP_MASK) ^ ((gvsid >> (SID_MAP_BITS * 0)) & SID_MAP_MASK)); } static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid) { struct kvmppc_sid_map *map; u16 sid_map_mask; if (vcpu->arch.msr & MSR_PR) gvsid |= VSID_PR; sid_map_mask = kvmppc_sid_hash(vcpu, gvsid); map = &to_book3s(vcpu)->sid_map[sid_map_mask]; if (map->guest_vsid == gvsid) { dprintk_sr("SR: Searching 0x%llx -> 0x%llx\n", gvsid, map->host_vsid); return map; } map = &to_book3s(vcpu)->sid_map[SID_MAP_MASK - sid_map_mask]; if (map->guest_vsid == gvsid) { dprintk_sr("SR: Searching 0x%llx -> 0x%llx\n", gvsid, map->host_vsid); return map; } dprintk_sr("SR: Searching 0x%llx -> not found\n", gvsid); return NULL; } static u32 *kvmppc_mmu_get_pteg(struct kvm_vcpu *vcpu, u32 vsid, u32 eaddr, bool primary) { u32 page, hash; ulong pteg = htab; page = (eaddr & ~ESID_MASK) >> 12; hash = ((vsid ^ page) << 6); if (!primary) hash = ~hash; hash &= htabmask; pteg |= hash; dprintk_mmu("htab: %lx | hash: %x | htabmask: %x | pteg: %lx\n", htab, hash, htabmask, pteg); return (u32*)pteg; } extern char etext[]; int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte) { pfn_t hpaddr; u64 va; u64 vsid; struct kvmppc_sid_map *map; volatile u32 *pteg; u32 eaddr = orig_pte->eaddr; u32 pteg0, pteg1; register int rr = 0; bool primary = false; bool evict = false; int hpte_id; struct hpte_cache *pte; /* Get host physical address for gpa */ hpaddr = gfn_to_pfn(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT); if (kvm_is_error_hva(hpaddr)) { printk(KERN_INFO "Couldn't get guest page for gfn %lx!\n", orig_pte->eaddr); return -EINVAL; } hpaddr <<= PAGE_SHIFT; /* and write the mapping ea -> hpa into the pt */ vcpu->arch.mmu.esid_to_vsid(vcpu, orig_pte->eaddr >> SID_SHIFT, &vsid); map = find_sid_vsid(vcpu, vsid); if (!map) { kvmppc_mmu_map_segment(vcpu, eaddr); map = find_sid_vsid(vcpu, vsid); } BUG_ON(!map); vsid = map->host_vsid; va = (vsid << SID_SHIFT) | (eaddr & ~ESID_MASK); next_pteg: if (rr == 16) { primary = !primary; evict = true; rr = 0; } pteg = kvmppc_mmu_get_pteg(vcpu, vsid, eaddr, primary); /* not evicting yet */ if (!evict && (pteg[rr] & PTE_V)) { rr += 2; goto next_pteg; } dprintk_mmu("KVM: old PTEG: %p (%d)\n", pteg, rr); dprintk_mmu("KVM: %08x - %08x\n", pteg[0], pteg[1]); dprintk_mmu("KVM: %08x - %08x\n", pteg[2], pteg[3]); dprintk_mmu("KVM: %08x - %08x\n", pteg[4], pteg[5]); dprintk_mmu("KVM: %08x - %08x\n", pteg[6], pteg[7]); dprintk_mmu("KVM: %08x - %08x\n", pteg[8], pteg[9]); dprintk_mmu("KVM: %08x - %08x\n", pteg[10], pteg[11]); dprintk_mmu("KVM: %08x - %08x\n", pteg[12], pteg[13]); dprintk_mmu("KVM: %08x - %08x\n", pteg[14], pteg[15]); pteg0 = ((eaddr & 0x0fffffff) >> 22) | (vsid << 7) | PTE_V | (primary ? 0 : PTE_SEC); pteg1 = hpaddr | PTE_M | PTE_R | PTE_C; if (orig_pte->may_write) { pteg1 |= PP_RWRW; mark_page_dirty(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT); } else { pteg1 |= PP_RWRX; } local_irq_disable(); if (pteg[rr]) { pteg[rr] = 0; asm volatile ("sync"); } pteg[rr + 1] = pteg1; pteg[rr] = pteg0; asm volatile ("sync"); local_irq_enable(); dprintk_mmu("KVM: new PTEG: %p\n", pteg); dprintk_mmu("KVM: %08x - %08x\n", pteg[0], pteg[1]); dprintk_mmu("KVM: %08x - %08x\n", pteg[2], pteg[3]); dprintk_mmu("KVM: %08x - %08x\n", pteg[4], pteg[5]); dprintk_mmu("KVM: %08x - %08x\n", pteg[6], pteg[7]); dprintk_mmu("KVM: %08x - %08x\n", pteg[8], pteg[9]); dprintk_mmu("KVM: %08x - %08x\n", pteg[10], pteg[11]); dprintk_mmu("KVM: %08x - %08x\n", pteg[12], pteg[13]); dprintk_mmu("KVM: %08x - %08x\n", pteg[14], pteg[15]); /* Now tell our Shadow PTE code about the new page */ hpte_id = kvmppc_mmu_hpte_cache_next(vcpu); pte = &vcpu->arch.hpte_cache[hpte_id]; dprintk_mmu("KVM: %c%c Map 0x%llx: [%lx] 0x%llx (0x%llx) -> %lx\n", orig_pte->may_write ? 'w' : '-', orig_pte->may_execute ? 'x' : '-', orig_pte->eaddr, (ulong)pteg, va, orig_pte->vpage, hpaddr); pte->slot = (ulong)&pteg[rr]; pte->host_va = va; pte->pte = *orig_pte; pte->pfn = hpaddr >> PAGE_SHIFT; return 0; } static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid) { struct kvmppc_sid_map *map; struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); u16 sid_map_mask; static int backwards_map = 0; if (vcpu->arch.msr & MSR_PR) gvsid |= VSID_PR; /* We might get collisions that trap in preceding order, so let's map them differently */ sid_map_mask = kvmppc_sid_hash(vcpu, gvsid); if (backwards_map) sid_map_mask = SID_MAP_MASK - sid_map_mask; map = &to_book3s(vcpu)->sid_map[sid_map_mask]; /* Make sure we're taking the other map next time */ backwards_map = !backwards_map; /* Uh-oh ... out of mappings. Let's flush! */ if (vcpu_book3s->vsid_next >= vcpu_book3s->vsid_max) { vcpu_book3s->vsid_next = vcpu_book3s->vsid_first; memset(vcpu_book3s->sid_map, 0, sizeof(struct kvmppc_sid_map) * SID_MAP_NUM); kvmppc_mmu_pte_flush(vcpu, 0, 0); kvmppc_mmu_flush_segments(vcpu); } map->host_vsid = vcpu_book3s->vsid_next; /* Would have to be 111 to be completely aligned with the rest of Linux, but that is just way too little space! */ vcpu_book3s->vsid_next+=1; map->guest_vsid = gvsid; map->valid = true; return map; } int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr) { u32 esid = eaddr >> SID_SHIFT; u64 gvsid; u32 sr; struct kvmppc_sid_map *map; struct kvmppc_book3s_shadow_vcpu *svcpu = to_svcpu(vcpu); if (vcpu->arch.mmu.esid_to_vsid(vcpu, esid, &gvsid)) { /* Invalidate an entry */ svcpu->sr[esid] = SR_INVALID; return -ENOENT; } map = find_sid_vsid(vcpu, gvsid); if (!map) map = create_sid_map(vcpu, gvsid); map->guest_esid = esid; sr = map->host_vsid | SR_KP; svcpu->sr[esid] = sr; dprintk_sr("MMU: mtsr %d, 0x%x\n", esid, sr); return 0; } void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu) { int i; struct kvmppc_book3s_shadow_vcpu *svcpu = to_svcpu(vcpu); dprintk_sr("MMU: flushing all segments (%d)\n", ARRAY_SIZE(svcpu->sr)); for (i = 0; i < ARRAY_SIZE(svcpu->sr); i++) svcpu->sr[i] = SR_INVALID; } void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu) { kvmppc_mmu_pte_flush(vcpu, 0, 0); preempt_disable(); __destroy_context(to_book3s(vcpu)->context_id); preempt_enable(); } /* From mm/mmu_context_hash32.c */ #define CTX_TO_VSID(ctx) (((ctx) * (897 * 16)) & 0xffffff) int kvmppc_mmu_init(struct kvm_vcpu *vcpu) { struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); int err; ulong sdr1; err = __init_new_context(); if (err < 0) return -1; vcpu3s->context_id = err; vcpu3s->vsid_max = CTX_TO_VSID(vcpu3s->context_id + 1) - 1; vcpu3s->vsid_first = CTX_TO_VSID(vcpu3s->context_id); #if 0 /* XXX still doesn't guarantee uniqueness */ /* We could collide with the Linux vsid space because the vsid * wraps around at 24 bits. We're safe if we do our own space * though, so let's always set the highest bit. */ vcpu3s->vsid_max |= 0x00800000; vcpu3s->vsid_first |= 0x00800000; #endif BUG_ON(vcpu3s->vsid_max < vcpu3s->vsid_first); vcpu3s->vsid_next = vcpu3s->vsid_first; /* Remember where the HTAB is */ asm ( "mfsdr1 %0" : "=r"(sdr1) ); htabmask = ((sdr1 & 0x1FF) << 16) | 0xFFC0; htab = (ulong)__va(sdr1 & 0xffff0000); return 0; }