/* * Copyright 2011 Paul Mackerras, IBM Corp. * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. * * Authors: * Paul Mackerras * Alexander Graf * Kevin Wolf * * Description: KVM functions specific to running on Book 3S * processors in hypervisor mode (specifically POWER7 and later). * * This file is derived from arch/powerpc/kvm/book3s.c, * by Alexander Graf . * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* #define EXIT_DEBUG */ /* #define EXIT_DEBUG_SIMPLE */ /* #define EXIT_DEBUG_INT */ static void kvmppc_end_cede(struct kvm_vcpu *vcpu); static int kvmppc_hv_setup_rma(struct kvm_vcpu *vcpu); void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { local_paca->kvm_hstate.kvm_vcpu = vcpu; local_paca->kvm_hstate.kvm_vcore = vcpu->arch.vcore; } void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu) { } void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr) { vcpu->arch.shregs.msr = msr; kvmppc_end_cede(vcpu); } void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr) { vcpu->arch.pvr = pvr; } void kvmppc_dump_regs(struct kvm_vcpu *vcpu) { int r; pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); pr_err("pc = %.16lx msr = %.16llx trap = %x\n", vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap); for (r = 0; r < 16; ++r) pr_err("r%2d = %.16lx r%d = %.16lx\n", r, kvmppc_get_gpr(vcpu, r), r+16, kvmppc_get_gpr(vcpu, r+16)); pr_err("ctr = %.16lx lr = %.16lx\n", vcpu->arch.ctr, vcpu->arch.lr); pr_err("srr0 = %.16llx srr1 = %.16llx\n", vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n", vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr); pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); pr_err("fault dar = %.16lx dsisr = %.8x\n", vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); for (r = 0; r < vcpu->arch.slb_max; ++r) pr_err(" ESID = %.16llx VSID = %.16llx\n", vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1, vcpu->arch.last_inst); } struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) { int r; struct kvm_vcpu *v, *ret = NULL; mutex_lock(&kvm->lock); kvm_for_each_vcpu(r, v, kvm) { if (v->vcpu_id == id) { ret = v; break; } } mutex_unlock(&kvm->lock); return ret; } static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) { vpa->shared_proc = 1; vpa->yield_count = 1; } static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, unsigned long flags, unsigned long vcpuid, unsigned long vpa) { struct kvm *kvm = vcpu->kvm; unsigned long len, nb; void *va; struct kvm_vcpu *tvcpu; int err = H_PARAMETER; tvcpu = kvmppc_find_vcpu(kvm, vcpuid); if (!tvcpu) return H_PARAMETER; flags >>= 63 - 18; flags &= 7; if (flags == 0 || flags == 4) return H_PARAMETER; if (flags < 4) { if (vpa & 0x7f) return H_PARAMETER; if (flags >= 2 && !tvcpu->arch.vpa) return H_RESOURCE; /* registering new area; convert logical addr to real */ va = kvmppc_pin_guest_page(kvm, vpa, &nb); if (va == NULL) return H_PARAMETER; if (flags <= 1) len = *(unsigned short *)(va + 4); else len = *(unsigned int *)(va + 4); if (len > nb) goto out_unpin; switch (flags) { case 1: /* register VPA */ if (len < 640) goto out_unpin; if (tvcpu->arch.vpa) kvmppc_unpin_guest_page(kvm, vcpu->arch.vpa); tvcpu->arch.vpa = va; init_vpa(vcpu, va); break; case 2: /* register DTL */ if (len < 48) goto out_unpin; len -= len % 48; if (tvcpu->arch.dtl) kvmppc_unpin_guest_page(kvm, vcpu->arch.dtl); tvcpu->arch.dtl = va; tvcpu->arch.dtl_end = va + len; break; case 3: /* register SLB shadow buffer */ if (len < 16) goto out_unpin; if (tvcpu->arch.slb_shadow) kvmppc_unpin_guest_page(kvm, vcpu->arch.slb_shadow); tvcpu->arch.slb_shadow = va; break; } } else { switch (flags) { case 5: /* unregister VPA */ if (tvcpu->arch.slb_shadow || tvcpu->arch.dtl) return H_RESOURCE; if (!tvcpu->arch.vpa) break; kvmppc_unpin_guest_page(kvm, tvcpu->arch.vpa); tvcpu->arch.vpa = NULL; break; case 6: /* unregister DTL */ if (!tvcpu->arch.dtl) break; kvmppc_unpin_guest_page(kvm, tvcpu->arch.dtl); tvcpu->arch.dtl = NULL; break; case 7: /* unregister SLB shadow buffer */ if (!tvcpu->arch.slb_shadow) break; kvmppc_unpin_guest_page(kvm, tvcpu->arch.slb_shadow); tvcpu->arch.slb_shadow = NULL; break; } } return H_SUCCESS; out_unpin: kvmppc_unpin_guest_page(kvm, va); return err; } int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) { unsigned long req = kvmppc_get_gpr(vcpu, 3); unsigned long target, ret = H_SUCCESS; struct kvm_vcpu *tvcpu; switch (req) { case H_ENTER: ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4), kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6), kvmppc_get_gpr(vcpu, 7)); break; case H_CEDE: break; case H_PROD: target = kvmppc_get_gpr(vcpu, 4); tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); if (!tvcpu) { ret = H_PARAMETER; break; } tvcpu->arch.prodded = 1; smp_mb(); if (vcpu->arch.ceded) { if (waitqueue_active(&vcpu->wq)) { wake_up_interruptible(&vcpu->wq); vcpu->stat.halt_wakeup++; } } break; case H_CONFER: break; case H_REGISTER_VPA: ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6)); break; default: return RESUME_HOST; } kvmppc_set_gpr(vcpu, 3, ret); vcpu->arch.hcall_needed = 0; return RESUME_GUEST; } static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu, struct task_struct *tsk) { int r = RESUME_HOST; vcpu->stat.sum_exits++; run->exit_reason = KVM_EXIT_UNKNOWN; run->ready_for_interrupt_injection = 1; switch (vcpu->arch.trap) { /* We're good on these - the host merely wanted to get our attention */ case BOOK3S_INTERRUPT_HV_DECREMENTER: vcpu->stat.dec_exits++; r = RESUME_GUEST; break; case BOOK3S_INTERRUPT_EXTERNAL: vcpu->stat.ext_intr_exits++; r = RESUME_GUEST; break; case BOOK3S_INTERRUPT_PERFMON: r = RESUME_GUEST; break; case BOOK3S_INTERRUPT_PROGRAM: { ulong flags; /* * Normally program interrupts are delivered directly * to the guest by the hardware, but we can get here * as a result of a hypervisor emulation interrupt * (e40) getting turned into a 700 by BML RTAS. */ flags = vcpu->arch.shregs.msr & 0x1f0000ull; kvmppc_core_queue_program(vcpu, flags); r = RESUME_GUEST; break; } case BOOK3S_INTERRUPT_SYSCALL: { /* hcall - punt to userspace */ int i; if (vcpu->arch.shregs.msr & MSR_PR) { /* sc 1 from userspace - reflect to guest syscall */ kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL); r = RESUME_GUEST; break; } run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); for (i = 0; i < 9; ++i) run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); run->exit_reason = KVM_EXIT_PAPR_HCALL; vcpu->arch.hcall_needed = 1; r = RESUME_HOST; break; } /* * We get these next two if the guest accesses a page which it thinks * it has mapped but which is not actually present, either because * it is for an emulated I/O device or because the corresonding * host page has been paged out. Any other HDSI/HISI interrupts * have been handled already. */ case BOOK3S_INTERRUPT_H_DATA_STORAGE: r = kvmppc_book3s_hv_page_fault(run, vcpu, vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); break; case BOOK3S_INTERRUPT_H_INST_STORAGE: r = kvmppc_book3s_hv_page_fault(run, vcpu, kvmppc_get_pc(vcpu), 0); break; /* * This occurs if the guest executes an illegal instruction. * We just generate a program interrupt to the guest, since * we don't emulate any guest instructions at this stage. */ case BOOK3S_INTERRUPT_H_EMUL_ASSIST: kvmppc_core_queue_program(vcpu, 0x80000); r = RESUME_GUEST; break; default: kvmppc_dump_regs(vcpu); printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", vcpu->arch.trap, kvmppc_get_pc(vcpu), vcpu->arch.shregs.msr); r = RESUME_HOST; BUG(); break; } return r; } int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { int i; sregs->pvr = vcpu->arch.pvr; memset(sregs, 0, sizeof(struct kvm_sregs)); for (i = 0; i < vcpu->arch.slb_max; i++) { sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; } return 0; } int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { int i, j; kvmppc_set_pvr(vcpu, sregs->pvr); j = 0; for (i = 0; i < vcpu->arch.slb_nr; i++) { if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; ++j; } } vcpu->arch.slb_max = j; return 0; } int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) { int r = -EINVAL; switch (reg->id) { case KVM_REG_PPC_HIOR: r = put_user(0, (u64 __user *)reg->addr); break; default: break; } return r; } int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) { int r = -EINVAL; switch (reg->id) { case KVM_REG_PPC_HIOR: { u64 hior; /* Only allow this to be set to zero */ r = get_user(hior, (u64 __user *)reg->addr); if (!r && (hior != 0)) r = -EINVAL; break; } default: break; } return r; } int kvmppc_core_check_processor_compat(void) { if (cpu_has_feature(CPU_FTR_HVMODE)) return 0; return -EIO; } struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id) { struct kvm_vcpu *vcpu; int err = -EINVAL; int core; struct kvmppc_vcore *vcore; core = id / threads_per_core; if (core >= KVM_MAX_VCORES) goto out; err = -ENOMEM; vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); if (!vcpu) goto out; err = kvm_vcpu_init(vcpu, kvm, id); if (err) goto free_vcpu; vcpu->arch.shared = &vcpu->arch.shregs; vcpu->arch.last_cpu = -1; vcpu->arch.mmcr[0] = MMCR0_FC; vcpu->arch.ctrl = CTRL_RUNLATCH; /* default to host PVR, since we can't spoof it */ vcpu->arch.pvr = mfspr(SPRN_PVR); kvmppc_set_pvr(vcpu, vcpu->arch.pvr); kvmppc_mmu_book3s_hv_init(vcpu); /* * We consider the vcpu stopped until we see the first run ioctl for it. */ vcpu->arch.state = KVMPPC_VCPU_STOPPED; init_waitqueue_head(&vcpu->arch.cpu_run); mutex_lock(&kvm->lock); vcore = kvm->arch.vcores[core]; if (!vcore) { vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); if (vcore) { INIT_LIST_HEAD(&vcore->runnable_threads); spin_lock_init(&vcore->lock); init_waitqueue_head(&vcore->wq); } kvm->arch.vcores[core] = vcore; } mutex_unlock(&kvm->lock); if (!vcore) goto free_vcpu; spin_lock(&vcore->lock); ++vcore->num_threads; spin_unlock(&vcore->lock); vcpu->arch.vcore = vcore; vcpu->arch.cpu_type = KVM_CPU_3S_64; kvmppc_sanity_check(vcpu); return vcpu; free_vcpu: kmem_cache_free(kvm_vcpu_cache, vcpu); out: return ERR_PTR(err); } void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu) { if (vcpu->arch.dtl) kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.dtl); if (vcpu->arch.slb_shadow) kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.slb_shadow); if (vcpu->arch.vpa) kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.vpa); kvm_vcpu_uninit(vcpu); kmem_cache_free(kvm_vcpu_cache, vcpu); } static void kvmppc_set_timer(struct kvm_vcpu *vcpu) { unsigned long dec_nsec, now; now = get_tb(); if (now > vcpu->arch.dec_expires) { /* decrementer has already gone negative */ kvmppc_core_queue_dec(vcpu); kvmppc_core_prepare_to_enter(vcpu); return; } dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC / tb_ticks_per_sec; hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec), HRTIMER_MODE_REL); vcpu->arch.timer_running = 1; } static void kvmppc_end_cede(struct kvm_vcpu *vcpu) { vcpu->arch.ceded = 0; if (vcpu->arch.timer_running) { hrtimer_try_to_cancel(&vcpu->arch.dec_timer); vcpu->arch.timer_running = 0; } } extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu); extern void xics_wake_cpu(int cpu); static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, struct kvm_vcpu *vcpu) { struct kvm_vcpu *v; if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) return; vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; --vc->n_runnable; ++vc->n_busy; /* decrement the physical thread id of each following vcpu */ v = vcpu; list_for_each_entry_continue(v, &vc->runnable_threads, arch.run_list) --v->arch.ptid; list_del(&vcpu->arch.run_list); } static void kvmppc_start_thread(struct kvm_vcpu *vcpu) { int cpu; struct paca_struct *tpaca; struct kvmppc_vcore *vc = vcpu->arch.vcore; if (vcpu->arch.timer_running) { hrtimer_try_to_cancel(&vcpu->arch.dec_timer); vcpu->arch.timer_running = 0; } cpu = vc->pcpu + vcpu->arch.ptid; tpaca = &paca[cpu]; tpaca->kvm_hstate.kvm_vcpu = vcpu; tpaca->kvm_hstate.kvm_vcore = vc; tpaca->kvm_hstate.napping = 0; vcpu->cpu = vc->pcpu; smp_wmb(); #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) if (vcpu->arch.ptid) { tpaca->cpu_start = 0x80; wmb(); xics_wake_cpu(cpu); ++vc->n_woken; } #endif } static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc) { int i; HMT_low(); i = 0; while (vc->nap_count < vc->n_woken) { if (++i >= 1000000) { pr_err("kvmppc_wait_for_nap timeout %d %d\n", vc->nap_count, vc->n_woken); break; } cpu_relax(); } HMT_medium(); } /* * Check that we are on thread 0 and that any other threads in * this core are off-line. */ static int on_primary_thread(void) { int cpu = smp_processor_id(); int thr = cpu_thread_in_core(cpu); if (thr) return 0; while (++thr < threads_per_core) if (cpu_online(cpu + thr)) return 0; return 1; } /* * Run a set of guest threads on a physical core. * Called with vc->lock held. */ static int kvmppc_run_core(struct kvmppc_vcore *vc) { struct kvm_vcpu *vcpu, *vcpu0, *vnext; long ret; u64 now; int ptid; /* don't start if any threads have a signal pending */ list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) if (signal_pending(vcpu->arch.run_task)) return 0; /* * Make sure we are running on thread 0, and that * secondary threads are offline. * XXX we should also block attempts to bring any * secondary threads online. */ if (threads_per_core > 1 && !on_primary_thread()) { list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) vcpu->arch.ret = -EBUSY; goto out; } /* * Assign physical thread IDs, first to non-ceded vcpus * and then to ceded ones. */ ptid = 0; vcpu0 = NULL; list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { if (!vcpu->arch.ceded) { if (!ptid) vcpu0 = vcpu; vcpu->arch.ptid = ptid++; } } if (!vcpu0) return 0; /* nothing to run */ list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) if (vcpu->arch.ceded) vcpu->arch.ptid = ptid++; vc->n_woken = 0; vc->nap_count = 0; vc->entry_exit_count = 0; vc->vcore_state = VCORE_RUNNING; vc->in_guest = 0; vc->pcpu = smp_processor_id(); vc->napping_threads = 0; list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) kvmppc_start_thread(vcpu); preempt_disable(); spin_unlock(&vc->lock); kvm_guest_enter(); __kvmppc_vcore_entry(NULL, vcpu0); spin_lock(&vc->lock); /* disable sending of IPIs on virtual external irqs */ list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) vcpu->cpu = -1; /* wait for secondary threads to finish writing their state to memory */ if (vc->nap_count < vc->n_woken) kvmppc_wait_for_nap(vc); /* prevent other vcpu threads from doing kvmppc_start_thread() now */ vc->vcore_state = VCORE_EXITING; spin_unlock(&vc->lock); /* make sure updates to secondary vcpu structs are visible now */ smp_mb(); kvm_guest_exit(); preempt_enable(); kvm_resched(vcpu); now = get_tb(); list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { /* cancel pending dec exception if dec is positive */ if (now < vcpu->arch.dec_expires && kvmppc_core_pending_dec(vcpu)) kvmppc_core_dequeue_dec(vcpu); ret = RESUME_GUEST; if (vcpu->arch.trap) ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu, vcpu->arch.run_task); vcpu->arch.ret = ret; vcpu->arch.trap = 0; if (vcpu->arch.ceded) { if (ret != RESUME_GUEST) kvmppc_end_cede(vcpu); else kvmppc_set_timer(vcpu); } } spin_lock(&vc->lock); out: vc->vcore_state = VCORE_INACTIVE; list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, arch.run_list) { if (vcpu->arch.ret != RESUME_GUEST) { kvmppc_remove_runnable(vc, vcpu); wake_up(&vcpu->arch.cpu_run); } } return 1; } /* * Wait for some other vcpu thread to execute us, and * wake us up when we need to handle something in the host. */ static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state) { DEFINE_WAIT(wait); prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) schedule(); finish_wait(&vcpu->arch.cpu_run, &wait); } /* * All the vcpus in this vcore are idle, so wait for a decrementer * or external interrupt to one of the vcpus. vc->lock is held. */ static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) { DEFINE_WAIT(wait); struct kvm_vcpu *v; int all_idle = 1; prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE); vc->vcore_state = VCORE_SLEEPING; spin_unlock(&vc->lock); list_for_each_entry(v, &vc->runnable_threads, arch.run_list) { if (!v->arch.ceded || v->arch.pending_exceptions) { all_idle = 0; break; } } if (all_idle) schedule(); finish_wait(&vc->wq, &wait); spin_lock(&vc->lock); vc->vcore_state = VCORE_INACTIVE; } static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) { int n_ceded; int prev_state; struct kvmppc_vcore *vc; struct kvm_vcpu *v, *vn; kvm_run->exit_reason = 0; vcpu->arch.ret = RESUME_GUEST; vcpu->arch.trap = 0; /* * Synchronize with other threads in this virtual core */ vc = vcpu->arch.vcore; spin_lock(&vc->lock); vcpu->arch.ceded = 0; vcpu->arch.run_task = current; vcpu->arch.kvm_run = kvm_run; prev_state = vcpu->arch.state; vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads); ++vc->n_runnable; /* * This happens the first time this is called for a vcpu. * If the vcore is already running, we may be able to start * this thread straight away and have it join in. */ if (prev_state == KVMPPC_VCPU_STOPPED) { if (vc->vcore_state == VCORE_RUNNING && VCORE_EXIT_COUNT(vc) == 0) { vcpu->arch.ptid = vc->n_runnable - 1; kvmppc_start_thread(vcpu); } } else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST) --vc->n_busy; while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && !signal_pending(current)) { if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) { spin_unlock(&vc->lock); kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE); spin_lock(&vc->lock); continue; } n_ceded = 0; list_for_each_entry(v, &vc->runnable_threads, arch.run_list) n_ceded += v->arch.ceded; if (n_ceded == vc->n_runnable) kvmppc_vcore_blocked(vc); else kvmppc_run_core(vc); list_for_each_entry_safe(v, vn, &vc->runnable_threads, arch.run_list) { kvmppc_core_prepare_to_enter(v); if (signal_pending(v->arch.run_task)) { kvmppc_remove_runnable(vc, v); v->stat.signal_exits++; v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; v->arch.ret = -EINTR; wake_up(&v->arch.cpu_run); } } } if (signal_pending(current)) { if (vc->vcore_state == VCORE_RUNNING || vc->vcore_state == VCORE_EXITING) { spin_unlock(&vc->lock); kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE); spin_lock(&vc->lock); } if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { kvmppc_remove_runnable(vc, vcpu); vcpu->stat.signal_exits++; kvm_run->exit_reason = KVM_EXIT_INTR; vcpu->arch.ret = -EINTR; } } spin_unlock(&vc->lock); return vcpu->arch.ret; } int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu) { int r; if (!vcpu->arch.sane) { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; return -EINVAL; } kvmppc_core_prepare_to_enter(vcpu); /* No need to go into the guest when all we'll do is come back out */ if (signal_pending(current)) { run->exit_reason = KVM_EXIT_INTR; return -EINTR; } /* On the first time here, set up VRMA or RMA */ if (!vcpu->kvm->arch.rma_setup_done) { r = kvmppc_hv_setup_rma(vcpu); if (r) return r; } flush_fp_to_thread(current); flush_altivec_to_thread(current); flush_vsx_to_thread(current); vcpu->arch.wqp = &vcpu->arch.vcore->wq; vcpu->arch.pgdir = current->mm->pgd; do { r = kvmppc_run_vcpu(run, vcpu); if (run->exit_reason == KVM_EXIT_PAPR_HCALL && !(vcpu->arch.shregs.msr & MSR_PR)) { r = kvmppc_pseries_do_hcall(vcpu); kvmppc_core_prepare_to_enter(vcpu); } } while (r == RESUME_GUEST); return r; } static long kvmppc_stt_npages(unsigned long window_size) { return ALIGN((window_size >> SPAPR_TCE_SHIFT) * sizeof(u64), PAGE_SIZE) / PAGE_SIZE; } static void release_spapr_tce_table(struct kvmppc_spapr_tce_table *stt) { struct kvm *kvm = stt->kvm; int i; mutex_lock(&kvm->lock); list_del(&stt->list); for (i = 0; i < kvmppc_stt_npages(stt->window_size); i++) __free_page(stt->pages[i]); kfree(stt); mutex_unlock(&kvm->lock); kvm_put_kvm(kvm); } static int kvm_spapr_tce_fault(struct vm_area_struct *vma, struct vm_fault *vmf) { struct kvmppc_spapr_tce_table *stt = vma->vm_file->private_data; struct page *page; if (vmf->pgoff >= kvmppc_stt_npages(stt->window_size)) return VM_FAULT_SIGBUS; page = stt->pages[vmf->pgoff]; get_page(page); vmf->page = page; return 0; } static const struct vm_operations_struct kvm_spapr_tce_vm_ops = { .fault = kvm_spapr_tce_fault, }; static int kvm_spapr_tce_mmap(struct file *file, struct vm_area_struct *vma) { vma->vm_ops = &kvm_spapr_tce_vm_ops; return 0; } static int kvm_spapr_tce_release(struct inode *inode, struct file *filp) { struct kvmppc_spapr_tce_table *stt = filp->private_data; release_spapr_tce_table(stt); return 0; } static struct file_operations kvm_spapr_tce_fops = { .mmap = kvm_spapr_tce_mmap, .release = kvm_spapr_tce_release, }; long kvm_vm_ioctl_create_spapr_tce(struct kvm *kvm, struct kvm_create_spapr_tce *args) { struct kvmppc_spapr_tce_table *stt = NULL; long npages; int ret = -ENOMEM; int i; /* Check this LIOBN hasn't been previously allocated */ list_for_each_entry(stt, &kvm->arch.spapr_tce_tables, list) { if (stt->liobn == args->liobn) return -EBUSY; } npages = kvmppc_stt_npages(args->window_size); stt = kzalloc(sizeof(*stt) + npages* sizeof(struct page *), GFP_KERNEL); if (!stt) goto fail; stt->liobn = args->liobn; stt->window_size = args->window_size; stt->kvm = kvm; for (i = 0; i < npages; i++) { stt->pages[i] = alloc_page(GFP_KERNEL | __GFP_ZERO); if (!stt->pages[i]) goto fail; } kvm_get_kvm(kvm); mutex_lock(&kvm->lock); list_add(&stt->list, &kvm->arch.spapr_tce_tables); mutex_unlock(&kvm->lock); return anon_inode_getfd("kvm-spapr-tce", &kvm_spapr_tce_fops, stt, O_RDWR); fail: if (stt) { for (i = 0; i < npages; i++) if (stt->pages[i]) __free_page(stt->pages[i]); kfree(stt); } return ret; } /* Work out RMLS (real mode limit selector) field value for a given RMA size. Assumes POWER7 or PPC970. */ static inline int lpcr_rmls(unsigned long rma_size) { switch (rma_size) { case 32ul << 20: /* 32 MB */ if (cpu_has_feature(CPU_FTR_ARCH_206)) return 8; /* only supported on POWER7 */ return -1; case 64ul << 20: /* 64 MB */ return 3; case 128ul << 20: /* 128 MB */ return 7; case 256ul << 20: /* 256 MB */ return 4; case 1ul << 30: /* 1 GB */ return 2; case 16ul << 30: /* 16 GB */ return 1; case 256ul << 30: /* 256 GB */ return 0; default: return -1; } } static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) { struct kvmppc_linear_info *ri = vma->vm_file->private_data; struct page *page; if (vmf->pgoff >= ri->npages) return VM_FAULT_SIGBUS; page = pfn_to_page(ri->base_pfn + vmf->pgoff); get_page(page); vmf->page = page; return 0; } static const struct vm_operations_struct kvm_rma_vm_ops = { .fault = kvm_rma_fault, }; static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma) { vma->vm_flags |= VM_RESERVED; vma->vm_ops = &kvm_rma_vm_ops; return 0; } static int kvm_rma_release(struct inode *inode, struct file *filp) { struct kvmppc_linear_info *ri = filp->private_data; kvm_release_rma(ri); return 0; } static struct file_operations kvm_rma_fops = { .mmap = kvm_rma_mmap, .release = kvm_rma_release, }; long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret) { struct kvmppc_linear_info *ri; long fd; ri = kvm_alloc_rma(); if (!ri) return -ENOMEM; fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR); if (fd < 0) kvm_release_rma(ri); ret->rma_size = ri->npages << PAGE_SHIFT; return fd; } /* * Get (and clear) the dirty memory log for a memory slot. */ int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) { struct kvm_memory_slot *memslot; int r; unsigned long n; mutex_lock(&kvm->slots_lock); r = -EINVAL; if (log->slot >= KVM_MEMORY_SLOTS) goto out; memslot = id_to_memslot(kvm->memslots, log->slot); r = -ENOENT; if (!memslot->dirty_bitmap) goto out; n = kvm_dirty_bitmap_bytes(memslot); memset(memslot->dirty_bitmap, 0, n); r = kvmppc_hv_get_dirty_log(kvm, memslot); if (r) goto out; r = -EFAULT; if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) goto out; r = 0; out: mutex_unlock(&kvm->slots_lock); return r; } static unsigned long slb_pgsize_encoding(unsigned long psize) { unsigned long senc = 0; if (psize > 0x1000) { senc = SLB_VSID_L; if (psize == 0x10000) senc |= SLB_VSID_LP_01; } return senc; } int kvmppc_core_prepare_memory_region(struct kvm *kvm, struct kvm_userspace_memory_region *mem) { unsigned long npages; unsigned long *phys; /* Allocate a slot_phys array */ phys = kvm->arch.slot_phys[mem->slot]; if (!kvm->arch.using_mmu_notifiers && !phys) { npages = mem->memory_size >> PAGE_SHIFT; phys = vzalloc(npages * sizeof(unsigned long)); if (!phys) return -ENOMEM; kvm->arch.slot_phys[mem->slot] = phys; kvm->arch.slot_npages[mem->slot] = npages; } return 0; } static void unpin_slot(struct kvm *kvm, int slot_id) { unsigned long *physp; unsigned long j, npages, pfn; struct page *page; physp = kvm->arch.slot_phys[slot_id]; npages = kvm->arch.slot_npages[slot_id]; if (physp) { spin_lock(&kvm->arch.slot_phys_lock); for (j = 0; j < npages; j++) { if (!(physp[j] & KVMPPC_GOT_PAGE)) continue; pfn = physp[j] >> PAGE_SHIFT; page = pfn_to_page(pfn); if (PageHuge(page)) page = compound_head(page); SetPageDirty(page); put_page(page); } kvm->arch.slot_phys[slot_id] = NULL; spin_unlock(&kvm->arch.slot_phys_lock); vfree(physp); } } void kvmppc_core_commit_memory_region(struct kvm *kvm, struct kvm_userspace_memory_region *mem) { } static int kvmppc_hv_setup_rma(struct kvm_vcpu *vcpu) { int err = 0; struct kvm *kvm = vcpu->kvm; struct kvmppc_linear_info *ri = NULL; unsigned long hva; struct kvm_memory_slot *memslot; struct vm_area_struct *vma; unsigned long lpcr, senc; unsigned long psize, porder; unsigned long rma_size; unsigned long rmls; unsigned long *physp; unsigned long i, npages; mutex_lock(&kvm->lock); if (kvm->arch.rma_setup_done) goto out; /* another vcpu beat us to it */ /* Look up the memslot for guest physical address 0 */ memslot = gfn_to_memslot(kvm, 0); /* We must have some memory at 0 by now */ err = -EINVAL; if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) goto out; /* Look up the VMA for the start of this memory slot */ hva = memslot->userspace_addr; down_read(¤t->mm->mmap_sem); vma = find_vma(current->mm, hva); if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) goto up_out; psize = vma_kernel_pagesize(vma); porder = __ilog2(psize); /* Is this one of our preallocated RMAs? */ if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops && hva == vma->vm_start) ri = vma->vm_file->private_data; up_read(¤t->mm->mmap_sem); if (!ri) { /* On POWER7, use VRMA; on PPC970, give up */ err = -EPERM; if (cpu_has_feature(CPU_FTR_ARCH_201)) { pr_err("KVM: CPU requires an RMO\n"); goto out; } /* We can handle 4k, 64k or 16M pages in the VRMA */ err = -EINVAL; if (!(psize == 0x1000 || psize == 0x10000 || psize == 0x1000000)) goto out; /* Update VRMASD field in the LPCR */ senc = slb_pgsize_encoding(psize); kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | (VRMA_VSID << SLB_VSID_SHIFT_1T); lpcr = kvm->arch.lpcr & ~LPCR_VRMASD; lpcr |= senc << (LPCR_VRMASD_SH - 4); kvm->arch.lpcr = lpcr; /* Create HPTEs in the hash page table for the VRMA */ kvmppc_map_vrma(vcpu, memslot, porder); } else { /* Set up to use an RMO region */ rma_size = ri->npages; if (rma_size > memslot->npages) rma_size = memslot->npages; rma_size <<= PAGE_SHIFT; rmls = lpcr_rmls(rma_size); err = -EINVAL; if (rmls < 0) { pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size); goto out; } atomic_inc(&ri->use_count); kvm->arch.rma = ri; /* Update LPCR and RMOR */ lpcr = kvm->arch.lpcr; if (cpu_has_feature(CPU_FTR_ARCH_201)) { /* PPC970; insert RMLS value (split field) in HID4 */ lpcr &= ~((1ul << HID4_RMLS0_SH) | (3ul << HID4_RMLS2_SH)); lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) | ((rmls & 3) << HID4_RMLS2_SH); /* RMOR is also in HID4 */ lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff) << HID4_RMOR_SH; } else { /* POWER7 */ lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L); lpcr |= rmls << LPCR_RMLS_SH; kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT; } kvm->arch.lpcr = lpcr; pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n", ri->base_pfn << PAGE_SHIFT, rma_size, lpcr); /* Initialize phys addrs of pages in RMO */ npages = ri->npages; porder = __ilog2(npages); physp = kvm->arch.slot_phys[memslot->id]; spin_lock(&kvm->arch.slot_phys_lock); for (i = 0; i < npages; ++i) physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) + porder; spin_unlock(&kvm->arch.slot_phys_lock); } /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */ smp_wmb(); kvm->arch.rma_setup_done = 1; err = 0; out: mutex_unlock(&kvm->lock); return err; up_out: up_read(¤t->mm->mmap_sem); goto out; } int kvmppc_core_init_vm(struct kvm *kvm) { long r; unsigned long lpcr; /* Allocate hashed page table */ r = kvmppc_alloc_hpt(kvm); if (r) return r; INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables); kvm->arch.rma = NULL; kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); if (cpu_has_feature(CPU_FTR_ARCH_201)) { /* PPC970; HID4 is effectively the LPCR */ unsigned long lpid = kvm->arch.lpid; kvm->arch.host_lpid = 0; kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4); lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH)); lpcr |= ((lpid >> 4) << HID4_LPID1_SH) | ((lpid & 0xf) << HID4_LPID5_SH); } else { /* POWER7; init LPCR for virtual RMA mode */ kvm->arch.host_lpid = mfspr(SPRN_LPID); kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); lpcr &= LPCR_PECE | LPCR_LPES; lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | LPCR_VPM0 | LPCR_VPM1; kvm->arch.vrma_slb_v = SLB_VSID_B_1T | (VRMA_VSID << SLB_VSID_SHIFT_1T); } kvm->arch.lpcr = lpcr; kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206); spin_lock_init(&kvm->arch.slot_phys_lock); return 0; } void kvmppc_core_destroy_vm(struct kvm *kvm) { unsigned long i; if (!kvm->arch.using_mmu_notifiers) for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) unpin_slot(kvm, i); if (kvm->arch.rma) { kvm_release_rma(kvm->arch.rma); kvm->arch.rma = NULL; } kvmppc_free_hpt(kvm); WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables)); } /* These are stubs for now */ void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end) { } /* We don't need to emulate any privileged instructions or dcbz */ int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu, unsigned int inst, int *advance) { return EMULATE_FAIL; } int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs) { return EMULATE_FAIL; } int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt) { return EMULATE_FAIL; } static int kvmppc_book3s_hv_init(void) { int r; r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); if (r) return r; r = kvmppc_mmu_hv_init(); return r; } static void kvmppc_book3s_hv_exit(void) { kvm_exit(); } module_init(kvmppc_book3s_hv_init); module_exit(kvmppc_book3s_hv_exit);