/* * PowerPC version derived from arch/arm/mm/consistent.c * Copyright (C) 2001 Dan Malek (dmalek@jlc.net) * * Copyright (C) 2000 Russell King * * Consistent memory allocators. Used for DMA devices that want to * share uncached memory with the processor core. The function return * is the virtual address and 'dma_handle' is the physical address. * Mostly stolen from the ARM port, with some changes for PowerPC. * -- Dan * * Reorganized to get rid of the arch-specific consistent_* functions * and provide non-coherent implementations for the DMA API. -Matt * * Added in_interrupt() safe dma_alloc_coherent()/dma_free_coherent() * implementation. This is pulled straight from ARM and barely * modified. -Matt * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include /* * Allocate DMA-coherent memory space and return both the kernel remapped * virtual and bus address for that space. */ void * __dma_alloc_coherent(size_t size, dma_addr_t *handle, gfp_t gfp) { struct page *page; unsigned long order; int i; unsigned int nr_pages = PAGE_ALIGN(size)>>PAGE_SHIFT; unsigned int array_size = nr_pages * sizeof(struct page *); struct page **pages; struct page *end; u64 mask = 0x00ffffff, limit; /* ISA default */ struct vm_struct *area; BUG_ON(!mem_init_done); size = PAGE_ALIGN(size); limit = (mask + 1) & ~mask; if (limit && size >= limit) { printk(KERN_WARNING "coherent allocation too big (requested " "%#x mask %#Lx)\n", size, mask); return NULL; } order = get_order(size); if (mask != 0xffffffff) gfp |= GFP_DMA; page = alloc_pages(gfp, order); if (!page) goto no_page; end = page + (1 << order); /* * Invalidate any data that might be lurking in the * kernel direct-mapped region for device DMA. */ { unsigned long kaddr = (unsigned long)page_address(page); memset(page_address(page), 0, size); flush_dcache_range(kaddr, kaddr + size); } split_page(page, order); /* * Set the "dma handle" */ *handle = page_to_phys(page); area = get_vm_area_caller(size, VM_IOREMAP, __builtin_return_address(1)); if (!area) goto out_free_pages; if (array_size > PAGE_SIZE) { pages = vmalloc(array_size); area->flags |= VM_VPAGES; } else { pages = kmalloc(array_size, GFP_KERNEL); } if (!pages) goto out_free_area; area->pages = pages; area->nr_pages = nr_pages; for (i = 0; i < nr_pages; i++) pages[i] = page + i; if (map_vm_area(area, pgprot_noncached(PAGE_KERNEL), &pages)) goto out_unmap; /* * Free the otherwise unused pages. */ page += nr_pages; while (page < end) { __free_page(page); page++; } return area->addr; out_unmap: vunmap(area->addr); if (array_size > PAGE_SIZE) vfree(pages); else kfree(pages); goto out_free_pages; out_free_area: free_vm_area(area); out_free_pages: if (page) __free_pages(page, order); no_page: return NULL; } EXPORT_SYMBOL(__dma_alloc_coherent); /* * free a page as defined by the above mapping. */ void __dma_free_coherent(size_t size, void *vaddr) { vfree(vaddr); } EXPORT_SYMBOL(__dma_free_coherent); /* * make an area consistent. */ void __dma_sync(void *vaddr, size_t size, int direction) { unsigned long start = (unsigned long)vaddr; unsigned long end = start + size; switch (direction) { case DMA_NONE: BUG(); case DMA_FROM_DEVICE: /* * invalidate only when cache-line aligned otherwise there is * the potential for discarding uncommitted data from the cache */ if ((start & (L1_CACHE_BYTES - 1)) || (size & (L1_CACHE_BYTES - 1))) flush_dcache_range(start, end); else invalidate_dcache_range(start, end); break; case DMA_TO_DEVICE: /* writeback only */ clean_dcache_range(start, end); break; case DMA_BIDIRECTIONAL: /* writeback and invalidate */ flush_dcache_range(start, end); break; } } EXPORT_SYMBOL(__dma_sync); #ifdef CONFIG_HIGHMEM /* * __dma_sync_page() implementation for systems using highmem. * In this case, each page of a buffer must be kmapped/kunmapped * in order to have a virtual address for __dma_sync(). This must * not sleep so kmap_atomic()/kunmap_atomic() are used. * * Note: yes, it is possible and correct to have a buffer extend * beyond the first page. */ static inline void __dma_sync_page_highmem(struct page *page, unsigned long offset, size_t size, int direction) { size_t seg_size = min((size_t)(PAGE_SIZE - offset), size); size_t cur_size = seg_size; unsigned long flags, start, seg_offset = offset; int nr_segs = 1 + ((size - seg_size) + PAGE_SIZE - 1)/PAGE_SIZE; int seg_nr = 0; local_irq_save(flags); do { start = (unsigned long)kmap_atomic(page + seg_nr, KM_PPC_SYNC_PAGE) + seg_offset; /* Sync this buffer segment */ __dma_sync((void *)start, seg_size, direction); kunmap_atomic((void *)start, KM_PPC_SYNC_PAGE); seg_nr++; /* Calculate next buffer segment size */ seg_size = min((size_t)PAGE_SIZE, size - cur_size); /* Add the segment size to our running total */ cur_size += seg_size; seg_offset = 0; } while (seg_nr < nr_segs); local_irq_restore(flags); } #endif /* CONFIG_HIGHMEM */ /* * __dma_sync_page makes memory consistent. identical to __dma_sync, but * takes a struct page instead of a virtual address */ void __dma_sync_page(struct page *page, unsigned long offset, size_t size, int direction) { #ifdef CONFIG_HIGHMEM __dma_sync_page_highmem(page, offset, size, direction); #else unsigned long start = (unsigned long)page_address(page) + offset; __dma_sync((void *)start, size, direction); #endif } EXPORT_SYMBOL(__dma_sync_page);