/* * PowerPC version * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) * and Cort Dougan (PReP) (cort@cs.nmt.edu) * Copyright (C) 1996 Paul Mackerras * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk). * * Derived from "arch/i386/mm/init.c" * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * Dave Engebretsen * Rework for PPC64 port. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if PGTABLE_RANGE > USER_VSID_RANGE #warning Limited user VSID range means pagetable space is wasted #endif #if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE) #warning TASK_SIZE is smaller than it needs to be. #endif int mem_init_done; unsigned long ioremap_bot = IMALLOC_BASE; static unsigned long phbs_io_bot = PHBS_IO_BASE; extern pgd_t swapper_pg_dir[]; extern struct task_struct *current_set[NR_CPUS]; unsigned long klimit = (unsigned long)_end; unsigned long _SDR1=0; unsigned long _ASR=0; /* max amount of RAM to use */ unsigned long __max_memory; /* info on what we think the IO hole is */ unsigned long io_hole_start; unsigned long io_hole_size; /* * Do very early mm setup. */ void __init mm_init_ppc64(void) { #ifndef CONFIG_PPC_ISERIES unsigned long i; #endif ppc64_boot_msg(0x100, "MM Init"); /* This is the story of the IO hole... please, keep seated, * unfortunately, we are out of oxygen masks at the moment. * So we need some rough way to tell where your big IO hole * is. On pmac, it's between 2G and 4G, on POWER3, it's around * that area as well, on POWER4 we don't have one, etc... * We need that as a "hint" when sizing the TCE table on POWER3 * So far, the simplest way that seem work well enough for us it * to just assume that the first discontinuity in our physical * RAM layout is the IO hole. That may not be correct in the future * (and isn't on iSeries but then we don't care ;) */ #ifndef CONFIG_PPC_ISERIES for (i = 1; i < lmb.memory.cnt; i++) { unsigned long base, prevbase, prevsize; prevbase = lmb.memory.region[i-1].base; prevsize = lmb.memory.region[i-1].size; base = lmb.memory.region[i].base; if (base > (prevbase + prevsize)) { io_hole_start = prevbase + prevsize; io_hole_size = base - (prevbase + prevsize); break; } } #endif /* CONFIG_PPC_ISERIES */ if (io_hole_start) printk("IO Hole assumed to be %lx -> %lx\n", io_hole_start, io_hole_start + io_hole_size - 1); ppc64_boot_msg(0x100, "MM Init Done"); } void free_initmem(void) { unsigned long addr; addr = (unsigned long)__init_begin; for (; addr < (unsigned long)__init_end; addr += PAGE_SIZE) { memset((void *)addr, 0xcc, PAGE_SIZE); ClearPageReserved(virt_to_page(addr)); set_page_count(virt_to_page(addr), 1); free_page(addr); totalram_pages++; } printk ("Freeing unused kernel memory: %luk freed\n", ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10); } #ifdef CONFIG_BLK_DEV_INITRD void free_initrd_mem(unsigned long start, unsigned long end) { if (start < end) printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10); for (; start < end; start += PAGE_SIZE) { ClearPageReserved(virt_to_page(start)); set_page_count(virt_to_page(start), 1); free_page(start); totalram_pages++; } } #endif /* * Initialize the bootmem system and give it all the memory we * have available. */ #ifndef CONFIG_NEED_MULTIPLE_NODES void __init do_init_bootmem(void) { unsigned long i; unsigned long start, bootmap_pages; unsigned long total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT; int boot_mapsize; /* * Find an area to use for the bootmem bitmap. Calculate the size of * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE. * Add 1 additional page in case the address isn't page-aligned. */ bootmap_pages = bootmem_bootmap_pages(total_pages); start = lmb_alloc(bootmap_pages<> PAGE_SHIFT, total_pages); max_pfn = max_low_pfn; /* Add all physical memory to the bootmem map, mark each area * present. */ for (i=0; i < lmb.memory.cnt; i++) free_bootmem(lmb.memory.region[i].base, lmb_size_bytes(&lmb.memory, i)); /* reserve the sections we're already using */ for (i=0; i < lmb.reserved.cnt; i++) reserve_bootmem(lmb.reserved.region[i].base, lmb_size_bytes(&lmb.reserved, i)); for (i=0; i < lmb.memory.cnt; i++) memory_present(0, lmb_start_pfn(&lmb.memory, i), lmb_end_pfn(&lmb.memory, i)); } /* * paging_init() sets up the page tables - in fact we've already done this. */ void __init paging_init(void) { unsigned long zones_size[MAX_NR_ZONES]; unsigned long zholes_size[MAX_NR_ZONES]; unsigned long total_ram = lmb_phys_mem_size(); unsigned long top_of_ram = lmb_end_of_DRAM(); printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", top_of_ram, total_ram); printk(KERN_INFO "Memory hole size: %ldMB\n", (top_of_ram - total_ram) >> 20); /* * All pages are DMA-able so we put them all in the DMA zone. */ memset(zones_size, 0, sizeof(zones_size)); memset(zholes_size, 0, sizeof(zholes_size)); zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT; zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT; free_area_init_node(0, NODE_DATA(0), zones_size, __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size); } #endif /* ! CONFIG_NEED_MULTIPLE_NODES */ static struct kcore_list kcore_vmem; static int __init setup_kcore(void) { int i; for (i=0; i < lmb.memory.cnt; i++) { unsigned long base, size; struct kcore_list *kcore_mem; base = lmb.memory.region[i].base; size = lmb.memory.region[i].size; /* GFP_ATOMIC to avoid might_sleep warnings during boot */ kcore_mem = kmalloc(sizeof(struct kcore_list), GFP_ATOMIC); if (!kcore_mem) panic("mem_init: kmalloc failed\n"); kclist_add(kcore_mem, __va(base), size); } kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START); return 0; } module_init(setup_kcore); void __init mem_init(void) { #ifdef CONFIG_NEED_MULTIPLE_NODES int nid; #endif pg_data_t *pgdat; unsigned long i; struct page *page; unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize; num_physpages = max_low_pfn; /* RAM is assumed contiguous */ high_memory = (void *) __va(max_low_pfn * PAGE_SIZE); #ifdef CONFIG_NEED_MULTIPLE_NODES for_each_online_node(nid) { if (NODE_DATA(nid)->node_spanned_pages != 0) { printk("freeing bootmem node %x\n", nid); totalram_pages += free_all_bootmem_node(NODE_DATA(nid)); } } #else max_mapnr = num_physpages; totalram_pages += free_all_bootmem(); #endif for_each_pgdat(pgdat) { for (i = 0; i < pgdat->node_spanned_pages; i++) { page = pgdat_page_nr(pgdat, i); if (PageReserved(page)) reservedpages++; } } codesize = (unsigned long)&_etext - (unsigned long)&_stext; initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin; datasize = (unsigned long)&_edata - (unsigned long)&__init_end; bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start; printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, " "%luk reserved, %luk data, %luk bss, %luk init)\n", (unsigned long)nr_free_pages() << (PAGE_SHIFT-10), num_physpages << (PAGE_SHIFT-10), codesize >> 10, reservedpages << (PAGE_SHIFT-10), datasize >> 10, bsssize >> 10, initsize >> 10); mem_init_done = 1; /* Initialize the vDSO */ vdso_init(); } void __iomem * reserve_phb_iospace(unsigned long size) { void __iomem *virt_addr; if (phbs_io_bot >= IMALLOC_BASE) panic("reserve_phb_iospace(): phb io space overflow\n"); virt_addr = (void __iomem *) phbs_io_bot; phbs_io_bot += size; return virt_addr; } static void zero_ctor(void *addr, kmem_cache_t *cache, unsigned long flags) { memset(addr, 0, kmem_cache_size(cache)); } static const int pgtable_cache_size[2] = { PTE_TABLE_SIZE, PMD_TABLE_SIZE }; static const char *pgtable_cache_name[ARRAY_SIZE(pgtable_cache_size)] = { "pgd_pte_cache", "pud_pmd_cache", }; kmem_cache_t *pgtable_cache[ARRAY_SIZE(pgtable_cache_size)]; void pgtable_cache_init(void) { int i; BUILD_BUG_ON(PTE_TABLE_SIZE != pgtable_cache_size[PTE_CACHE_NUM]); BUILD_BUG_ON(PMD_TABLE_SIZE != pgtable_cache_size[PMD_CACHE_NUM]); BUILD_BUG_ON(PUD_TABLE_SIZE != pgtable_cache_size[PUD_CACHE_NUM]); BUILD_BUG_ON(PGD_TABLE_SIZE != pgtable_cache_size[PGD_CACHE_NUM]); for (i = 0; i < ARRAY_SIZE(pgtable_cache_size); i++) { int size = pgtable_cache_size[i]; const char *name = pgtable_cache_name[i]; pgtable_cache[i] = kmem_cache_create(name, size, size, SLAB_HWCACHE_ALIGN | SLAB_MUST_HWCACHE_ALIGN, zero_ctor, NULL); if (! pgtable_cache[i]) panic("pgtable_cache_init(): could not create %s!\n", name); } } pgprot_t phys_mem_access_prot(struct file *file, unsigned long addr, unsigned long size, pgprot_t vma_prot) { if (ppc_md.phys_mem_access_prot) return ppc_md.phys_mem_access_prot(file, addr, size, vma_prot); if (!page_is_ram(addr >> PAGE_SHIFT)) vma_prot = __pgprot(pgprot_val(vma_prot) | _PAGE_GUARDED | _PAGE_NO_CACHE); return vma_prot; } EXPORT_SYMBOL(phys_mem_access_prot);