// SPDX-License-Identifier: GPL-2.0-or-later /* * This file contains the routines for initializing the MMU * on the 8xx series of chips. * -- christophe * * Derived from arch/powerpc/mm/40x_mmu.c: */ #include #include #include #include #include #include #include #define IMMR_SIZE (FIX_IMMR_SIZE << PAGE_SHIFT) extern int __map_without_ltlbs; static unsigned long block_mapped_ram; /* * Return PA for this VA if it is in an area mapped with LTLBs or fixmap. * Otherwise, returns 0 */ phys_addr_t v_block_mapped(unsigned long va) { unsigned long p = PHYS_IMMR_BASE; if (va >= VIRT_IMMR_BASE && va < VIRT_IMMR_BASE + IMMR_SIZE) return p + va - VIRT_IMMR_BASE; if (__map_without_ltlbs) return 0; if (va >= PAGE_OFFSET && va < PAGE_OFFSET + block_mapped_ram) return __pa(va); return 0; } /* * Return VA for a given PA mapped with LTLBs or fixmap * Return 0 if not mapped */ unsigned long p_block_mapped(phys_addr_t pa) { unsigned long p = PHYS_IMMR_BASE; if (pa >= p && pa < p + IMMR_SIZE) return VIRT_IMMR_BASE + pa - p; if (__map_without_ltlbs) return 0; if (pa < block_mapped_ram) return (unsigned long)__va(pa); return 0; } static pte_t __init *early_hugepd_alloc_kernel(hugepd_t *pmdp, unsigned long va) { if (hpd_val(*pmdp) == 0) { pte_t *ptep = memblock_alloc(sizeof(pte_basic_t), SZ_4K); if (!ptep) return NULL; hugepd_populate_kernel((hugepd_t *)pmdp, ptep, PAGE_SHIFT_8M); hugepd_populate_kernel((hugepd_t *)pmdp + 1, ptep, PAGE_SHIFT_8M); } return hugepte_offset(*(hugepd_t *)pmdp, va, PGDIR_SHIFT); } static int __ref __early_map_kernel_hugepage(unsigned long va, phys_addr_t pa, pgprot_t prot, int psize, bool new) { pmd_t *pmdp = pmd_off_k(va); pte_t *ptep; if (WARN_ON(psize != MMU_PAGE_512K && psize != MMU_PAGE_8M)) return -EINVAL; if (new) { if (WARN_ON(slab_is_available())) return -EINVAL; if (psize == MMU_PAGE_512K) ptep = early_pte_alloc_kernel(pmdp, va); else ptep = early_hugepd_alloc_kernel((hugepd_t *)pmdp, va); } else { if (psize == MMU_PAGE_512K) ptep = pte_offset_kernel(pmdp, va); else ptep = hugepte_offset(*(hugepd_t *)pmdp, va, PGDIR_SHIFT); } if (WARN_ON(!ptep)) return -ENOMEM; /* The PTE should never be already present */ if (new && WARN_ON(pte_present(*ptep) && pgprot_val(prot))) return -EINVAL; set_huge_pte_at(&init_mm, va, ptep, pte_mkhuge(pfn_pte(pa >> PAGE_SHIFT, prot))); return 0; } /* * MMU_init_hw does the chip-specific initialization of the MMU hardware. */ void __init MMU_init_hw(void) { } static bool immr_is_mapped __initdata; void __init mmu_mapin_immr(void) { if (immr_is_mapped) return; immr_is_mapped = true; __early_map_kernel_hugepage(VIRT_IMMR_BASE, PHYS_IMMR_BASE, PAGE_KERNEL_NCG, MMU_PAGE_512K, true); } static void mmu_mapin_ram_chunk(unsigned long offset, unsigned long top, pgprot_t prot, bool new) { unsigned long v = PAGE_OFFSET + offset; unsigned long p = offset; WARN_ON(!IS_ALIGNED(offset, SZ_512K) || !IS_ALIGNED(top, SZ_512K)); for (; p < ALIGN(p, SZ_8M) && p < top; p += SZ_512K, v += SZ_512K) __early_map_kernel_hugepage(v, p, prot, MMU_PAGE_512K, new); for (; p < ALIGN_DOWN(top, SZ_8M) && p < top; p += SZ_8M, v += SZ_8M) __early_map_kernel_hugepage(v, p, prot, MMU_PAGE_8M, new); for (; p < ALIGN_DOWN(top, SZ_512K) && p < top; p += SZ_512K, v += SZ_512K) __early_map_kernel_hugepage(v, p, prot, MMU_PAGE_512K, new); if (!new) flush_tlb_kernel_range(PAGE_OFFSET + v, PAGE_OFFSET + top); } unsigned long __init mmu_mapin_ram(unsigned long base, unsigned long top) { unsigned long etext8 = ALIGN(__pa(_etext), SZ_8M); unsigned long sinittext = __pa(_sinittext); bool strict_boundary = strict_kernel_rwx_enabled() || debug_pagealloc_enabled_or_kfence(); unsigned long boundary = strict_boundary ? sinittext : etext8; unsigned long einittext8 = ALIGN(__pa(_einittext), SZ_8M); WARN_ON(top < einittext8); mmu_mapin_immr(); if (__map_without_ltlbs) return 0; mmu_mapin_ram_chunk(0, boundary, PAGE_KERNEL_TEXT, true); if (debug_pagealloc_enabled_or_kfence()) { top = boundary; } else { mmu_mapin_ram_chunk(boundary, einittext8, PAGE_KERNEL_TEXT, true); mmu_mapin_ram_chunk(einittext8, top, PAGE_KERNEL, true); } if (top > SZ_32M) memblock_set_current_limit(top); block_mapped_ram = top; return top; } void mmu_mark_initmem_nx(void) { unsigned long etext8 = ALIGN(__pa(_etext), SZ_8M); unsigned long sinittext = __pa(_sinittext); unsigned long boundary = strict_kernel_rwx_enabled() ? sinittext : etext8; unsigned long einittext8 = ALIGN(__pa(_einittext), SZ_8M); mmu_mapin_ram_chunk(0, boundary, PAGE_KERNEL_TEXT, false); mmu_mapin_ram_chunk(boundary, einittext8, PAGE_KERNEL, false); mmu_pin_tlb(block_mapped_ram, false); } #ifdef CONFIG_STRICT_KERNEL_RWX void mmu_mark_rodata_ro(void) { unsigned long sinittext = __pa(_sinittext); mmu_mapin_ram_chunk(0, sinittext, PAGE_KERNEL_ROX, false); if (IS_ENABLED(CONFIG_PIN_TLB_DATA)) mmu_pin_tlb(block_mapped_ram, true); } #endif void __init setup_initial_memory_limit(phys_addr_t first_memblock_base, phys_addr_t first_memblock_size) { /* We don't currently support the first MEMBLOCK not mapping 0 * physical on those processors */ BUG_ON(first_memblock_base != 0); /* 8xx can only access 32MB at the moment */ memblock_set_current_limit(min_t(u64, first_memblock_size, SZ_32M)); } #ifdef CONFIG_PPC_KUEP void __init setup_kuep(bool disabled) { if (disabled) return; pr_info("Activating Kernel Userspace Execution Prevention\n"); mtspr(SPRN_MI_AP, MI_APG_KUEP); } #endif #ifdef CONFIG_PPC_KUAP struct static_key_false disable_kuap_key; EXPORT_SYMBOL(disable_kuap_key); void __init setup_kuap(bool disabled) { if (disabled) { static_branch_enable(&disable_kuap_key); return; } pr_info("Activating Kernel Userspace Access Protection\n"); mtspr(SPRN_MD_AP, MD_APG_KUAP); } #endif