/* * This file contains ioremap and related functions for 64-bit machines. * * Derived from arch/ppc64/mm/init.c * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * * Modifications by Paul Mackerras (PowerMac) (paulus@samba.org) * and Cort Dougan (PReP) (cort@cs.nmt.edu) * Copyright (C) 1996 Paul Mackerras * * Derived from "arch/i386/mm/init.c" * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * Dave Engebretsen * Rework for PPC64 port. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mmu_decl.h" #ifdef CONFIG_PPC_STD_MMU_64 #if TASK_SIZE_USER64 > (1UL << (ESID_BITS + SID_SHIFT)) #error TASK_SIZE_USER64 exceeds user VSID range #endif #endif #ifdef CONFIG_PPC_BOOK3S_64 /* * partition table and process table for ISA 3.0 */ struct prtb_entry *process_tb; struct patb_entry *partition_tb; /* * page table size */ unsigned long __pte_index_size; EXPORT_SYMBOL(__pte_index_size); unsigned long __pmd_index_size; EXPORT_SYMBOL(__pmd_index_size); unsigned long __pud_index_size; EXPORT_SYMBOL(__pud_index_size); unsigned long __pgd_index_size; EXPORT_SYMBOL(__pgd_index_size); unsigned long __pmd_cache_index; EXPORT_SYMBOL(__pmd_cache_index); unsigned long __pte_table_size; EXPORT_SYMBOL(__pte_table_size); unsigned long __pmd_table_size; EXPORT_SYMBOL(__pmd_table_size); unsigned long __pud_table_size; EXPORT_SYMBOL(__pud_table_size); unsigned long __pgd_table_size; EXPORT_SYMBOL(__pgd_table_size); unsigned long __pmd_val_bits; EXPORT_SYMBOL(__pmd_val_bits); unsigned long __pud_val_bits; EXPORT_SYMBOL(__pud_val_bits); unsigned long __pgd_val_bits; EXPORT_SYMBOL(__pgd_val_bits); unsigned long __kernel_virt_start; EXPORT_SYMBOL(__kernel_virt_start); unsigned long __kernel_virt_size; EXPORT_SYMBOL(__kernel_virt_size); unsigned long __vmalloc_start; EXPORT_SYMBOL(__vmalloc_start); unsigned long __vmalloc_end; EXPORT_SYMBOL(__vmalloc_end); struct page *vmemmap; EXPORT_SYMBOL(vmemmap); unsigned long __pte_frag_nr; EXPORT_SYMBOL(__pte_frag_nr); unsigned long __pte_frag_size_shift; EXPORT_SYMBOL(__pte_frag_size_shift); unsigned long ioremap_bot; #else /* !CONFIG_PPC_BOOK3S_64 */ unsigned long ioremap_bot = IOREMAP_BASE; #endif /** * __ioremap_at - Low level function to establish the page tables * for an IO mapping */ void __iomem * __ioremap_at(phys_addr_t pa, void *ea, unsigned long size, unsigned long flags) { unsigned long i; /* Make sure we have the base flags */ if ((flags & _PAGE_PRESENT) == 0) flags |= pgprot_val(PAGE_KERNEL); /* We don't support the 4K PFN hack with ioremap */ if (flags & H_PAGE_4K_PFN) return NULL; WARN_ON(pa & ~PAGE_MASK); WARN_ON(((unsigned long)ea) & ~PAGE_MASK); WARN_ON(size & ~PAGE_MASK); for (i = 0; i < size; i += PAGE_SIZE) if (map_kernel_page((unsigned long)ea+i, pa+i, flags)) return NULL; return (void __iomem *)ea; } /** * __iounmap_from - Low level function to tear down the page tables * for an IO mapping. This is used for mappings that * are manipulated manually, like partial unmapping of * PCI IOs or ISA space. */ void __iounmap_at(void *ea, unsigned long size) { WARN_ON(((unsigned long)ea) & ~PAGE_MASK); WARN_ON(size & ~PAGE_MASK); unmap_kernel_range((unsigned long)ea, size); } void __iomem * __ioremap_caller(phys_addr_t addr, unsigned long size, unsigned long flags, void *caller) { phys_addr_t paligned; void __iomem *ret; /* * Choose an address to map it to. * Once the imalloc system is running, we use it. * Before that, we map using addresses going * up from ioremap_bot. imalloc will use * the addresses from ioremap_bot through * IMALLOC_END * */ paligned = addr & PAGE_MASK; size = PAGE_ALIGN(addr + size) - paligned; if ((size == 0) || (paligned == 0)) return NULL; if (slab_is_available()) { struct vm_struct *area; area = __get_vm_area_caller(size, VM_IOREMAP, ioremap_bot, IOREMAP_END, caller); if (area == NULL) return NULL; area->phys_addr = paligned; ret = __ioremap_at(paligned, area->addr, size, flags); if (!ret) vunmap(area->addr); } else { ret = __ioremap_at(paligned, (void *)ioremap_bot, size, flags); if (ret) ioremap_bot += size; } if (ret) ret += addr & ~PAGE_MASK; return ret; } void __iomem * __ioremap(phys_addr_t addr, unsigned long size, unsigned long flags) { return __ioremap_caller(addr, size, flags, __builtin_return_address(0)); } void __iomem * ioremap(phys_addr_t addr, unsigned long size) { unsigned long flags = pgprot_val(pgprot_noncached(__pgprot(0))); void *caller = __builtin_return_address(0); if (ppc_md.ioremap) return ppc_md.ioremap(addr, size, flags, caller); return __ioremap_caller(addr, size, flags, caller); } void __iomem * ioremap_wc(phys_addr_t addr, unsigned long size) { unsigned long flags = pgprot_val(pgprot_noncached_wc(__pgprot(0))); void *caller = __builtin_return_address(0); if (ppc_md.ioremap) return ppc_md.ioremap(addr, size, flags, caller); return __ioremap_caller(addr, size, flags, caller); } void __iomem * ioremap_prot(phys_addr_t addr, unsigned long size, unsigned long flags) { void *caller = __builtin_return_address(0); /* writeable implies dirty for kernel addresses */ if (flags & _PAGE_WRITE) flags |= _PAGE_DIRTY; /* we don't want to let _PAGE_EXEC leak out */ flags &= ~_PAGE_EXEC; /* * Force kernel mapping. */ #if defined(CONFIG_PPC_BOOK3S_64) flags |= _PAGE_PRIVILEGED; #else flags &= ~_PAGE_USER; #endif #ifdef _PAGE_BAP_SR /* _PAGE_USER contains _PAGE_BAP_SR on BookE using the new PTE format * which means that we just cleared supervisor access... oops ;-) This * restores it */ flags |= _PAGE_BAP_SR; #endif if (ppc_md.ioremap) return ppc_md.ioremap(addr, size, flags, caller); return __ioremap_caller(addr, size, flags, caller); } /* * Unmap an IO region and remove it from imalloc'd list. * Access to IO memory should be serialized by driver. */ void __iounmap(volatile void __iomem *token) { void *addr; if (!slab_is_available()) return; addr = (void *) ((unsigned long __force) PCI_FIX_ADDR(token) & PAGE_MASK); if ((unsigned long)addr < ioremap_bot) { printk(KERN_WARNING "Attempt to iounmap early bolted mapping" " at 0x%p\n", addr); return; } vunmap(addr); } void iounmap(volatile void __iomem *token) { if (ppc_md.iounmap) ppc_md.iounmap(token); else __iounmap(token); } EXPORT_SYMBOL(ioremap); EXPORT_SYMBOL(ioremap_wc); EXPORT_SYMBOL(ioremap_prot); EXPORT_SYMBOL(__ioremap); EXPORT_SYMBOL(__ioremap_at); EXPORT_SYMBOL(iounmap); EXPORT_SYMBOL(__iounmap); EXPORT_SYMBOL(__iounmap_at); #ifndef __PAGETABLE_PUD_FOLDED /* 4 level page table */ struct page *pgd_page(pgd_t pgd) { if (pgd_huge(pgd)) return pte_page(pgd_pte(pgd)); return virt_to_page(pgd_page_vaddr(pgd)); } #endif struct page *pud_page(pud_t pud) { if (pud_huge(pud)) return pte_page(pud_pte(pud)); return virt_to_page(pud_page_vaddr(pud)); } /* * For hugepage we have pfn in the pmd, we use PTE_RPN_SHIFT bits for flags * For PTE page, we have a PTE_FRAG_SIZE (4K) aligned virtual address. */ struct page *pmd_page(pmd_t pmd) { if (pmd_trans_huge(pmd) || pmd_huge(pmd)) return pte_page(pmd_pte(pmd)); return virt_to_page(pmd_page_vaddr(pmd)); } #ifdef CONFIG_PPC_64K_PAGES static pte_t *get_from_cache(struct mm_struct *mm) { void *pte_frag, *ret; spin_lock(&mm->page_table_lock); ret = mm->context.pte_frag; if (ret) { pte_frag = ret + PTE_FRAG_SIZE; /* * If we have taken up all the fragments mark PTE page NULL */ if (((unsigned long)pte_frag & ~PAGE_MASK) == 0) pte_frag = NULL; mm->context.pte_frag = pte_frag; } spin_unlock(&mm->page_table_lock); return (pte_t *)ret; } static pte_t *__alloc_for_cache(struct mm_struct *mm, int kernel) { void *ret = NULL; struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO); if (!page) return NULL; if (!kernel && !pgtable_page_ctor(page)) { __free_page(page); return NULL; } ret = page_address(page); spin_lock(&mm->page_table_lock); /* * If we find pgtable_page set, we return * the allocated page with single fragement * count. */ if (likely(!mm->context.pte_frag)) { set_page_count(page, PTE_FRAG_NR); mm->context.pte_frag = ret + PTE_FRAG_SIZE; } spin_unlock(&mm->page_table_lock); return (pte_t *)ret; } pte_t *pte_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr, int kernel) { pte_t *pte; pte = get_from_cache(mm); if (pte) return pte; return __alloc_for_cache(mm, kernel); } #endif /* CONFIG_PPC_64K_PAGES */ void pte_fragment_free(unsigned long *table, int kernel) { struct page *page = virt_to_page(table); if (put_page_testzero(page)) { if (!kernel) pgtable_page_dtor(page); free_hot_cold_page(page, 0); } } #ifdef CONFIG_SMP void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift) { unsigned long pgf = (unsigned long)table; BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE); pgf |= shift; tlb_remove_table(tlb, (void *)pgf); } void __tlb_remove_table(void *_table) { void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE); unsigned shift = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE; if (!shift) /* PTE page needs special handling */ pte_fragment_free(table, 0); else { BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE); kmem_cache_free(PGT_CACHE(shift), table); } } #else void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift) { if (!shift) { /* PTE page needs special handling */ pte_fragment_free(table, 0); } else { BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE); kmem_cache_free(PGT_CACHE(shift), table); } } #endif #ifdef CONFIG_PPC_BOOK3S_64 void __init mmu_partition_table_init(void) { unsigned long patb_size = 1UL << PATB_SIZE_SHIFT; BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large."); partition_tb = __va(memblock_alloc_base(patb_size, patb_size, MEMBLOCK_ALLOC_ANYWHERE)); /* Initialize the Partition Table with no entries */ memset((void *)partition_tb, 0, patb_size); /* * update partition table control register, * 64 K size. */ mtspr(SPRN_PTCR, __pa(partition_tb) | (PATB_SIZE_SHIFT - 12)); } void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0, unsigned long dw1) { partition_tb[lpid].patb0 = cpu_to_be64(dw0); partition_tb[lpid].patb1 = cpu_to_be64(dw1); /* Global flush of TLBs and partition table caches for this lpid */ asm volatile("ptesync" : : : "memory"); asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : : "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); asm volatile("eieio; tlbsync; ptesync" : : : "memory"); } EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry); #endif /* CONFIG_PPC_BOOK3S_64 */