/* * SPU file system * * (C) Copyright IBM Deutschland Entwicklung GmbH 2005 * * Author: Arnd Bergmann * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #ifndef SPUFS_H #define SPUFS_H #include #include #include #include #include #include #include #include /* The magic number for our file system */ enum { SPUFS_MAGIC = 0x23c9b64e, }; struct spu_context_ops; struct spu_gang; /* * This is the state for spu utilization reporting to userspace. * Because this state is visible to userspace it must never change and needs * to be kept strictly separate from any internal state kept by the kernel. */ enum spuctx_execution_state { SPUCTX_UTIL_USER = 0, SPUCTX_UTIL_SYSTEM, SPUCTX_UTIL_IOWAIT, SPUCTX_UTIL_LOADED, SPUCTX_UTIL_MAX }; struct spu_context { struct spu *spu; /* pointer to a physical SPU */ struct spu_state csa; /* SPU context save area. */ spinlock_t mmio_lock; /* protects mmio access */ struct address_space *local_store; /* local store mapping. */ struct address_space *mfc; /* 'mfc' area mappings. */ struct address_space *cntl; /* 'control' area mappings. */ struct address_space *signal1; /* 'signal1' area mappings. */ struct address_space *signal2; /* 'signal2' area mappings. */ struct address_space *mss; /* 'mss' area mappings. */ struct address_space *psmap; /* 'psmap' area mappings. */ struct mutex mapping_lock; u64 object_id; /* user space pointer for oprofile */ enum { SPU_STATE_RUNNABLE, SPU_STATE_SAVED } state; struct mutex state_mutex; struct mutex run_mutex; struct mm_struct *owner; struct kref kref; wait_queue_head_t ibox_wq; wait_queue_head_t wbox_wq; wait_queue_head_t stop_wq; wait_queue_head_t mfc_wq; struct fasync_struct *ibox_fasync; struct fasync_struct *wbox_fasync; struct fasync_struct *mfc_fasync; u32 tagwait; struct spu_context_ops *ops; struct work_struct reap_work; unsigned long flags; unsigned long event_return; struct list_head gang_list; struct spu_gang *gang; /* owner thread */ pid_t tid; /* scheduler fields */ struct list_head rq; unsigned int time_slice; unsigned long sched_flags; cpumask_t cpus_allowed; int policy; int prio; /* statistics */ struct { /* updates protected by ctx->state_mutex */ enum spuctx_execution_state execution_state; unsigned long tstamp; /* time of last ctx switch */ unsigned long times[SPUCTX_UTIL_MAX]; unsigned long long vol_ctx_switch; unsigned long long invol_ctx_switch; unsigned long long min_flt; unsigned long long maj_flt; unsigned long long hash_flt; unsigned long long slb_flt; unsigned long long slb_flt_base; /* # at last ctx switch */ unsigned long long class2_intr; unsigned long long class2_intr_base; /* # at last ctx switch */ unsigned long long libassist; } stats; }; struct spu_gang { struct list_head list; struct mutex mutex; struct kref kref; int contexts; }; struct mfc_dma_command { int32_t pad; /* reserved */ uint32_t lsa; /* local storage address */ uint64_t ea; /* effective address */ uint16_t size; /* transfer size */ uint16_t tag; /* command tag */ uint16_t class; /* class ID */ uint16_t cmd; /* command opcode */ }; /* SPU context query/set operations. */ struct spu_context_ops { int (*mbox_read) (struct spu_context * ctx, u32 * data); u32(*mbox_stat_read) (struct spu_context * ctx); unsigned int (*mbox_stat_poll)(struct spu_context *ctx, unsigned int events); int (*ibox_read) (struct spu_context * ctx, u32 * data); int (*wbox_write) (struct spu_context * ctx, u32 data); u32(*signal1_read) (struct spu_context * ctx); void (*signal1_write) (struct spu_context * ctx, u32 data); u32(*signal2_read) (struct spu_context * ctx); void (*signal2_write) (struct spu_context * ctx, u32 data); void (*signal1_type_set) (struct spu_context * ctx, u64 val); u64(*signal1_type_get) (struct spu_context * ctx); void (*signal2_type_set) (struct spu_context * ctx, u64 val); u64(*signal2_type_get) (struct spu_context * ctx); u32(*npc_read) (struct spu_context * ctx); void (*npc_write) (struct spu_context * ctx, u32 data); u32(*status_read) (struct spu_context * ctx); char*(*get_ls) (struct spu_context * ctx); u32 (*runcntl_read) (struct spu_context * ctx); void (*runcntl_write) (struct spu_context * ctx, u32 data); void (*master_start) (struct spu_context * ctx); void (*master_stop) (struct spu_context * ctx); int (*set_mfc_query)(struct spu_context * ctx, u32 mask, u32 mode); u32 (*read_mfc_tagstatus)(struct spu_context * ctx); u32 (*get_mfc_free_elements)(struct spu_context *ctx); int (*send_mfc_command)(struct spu_context * ctx, struct mfc_dma_command * cmd); void (*dma_info_read) (struct spu_context * ctx, struct spu_dma_info * info); void (*proxydma_info_read) (struct spu_context * ctx, struct spu_proxydma_info * info); void (*restart_dma)(struct spu_context *ctx); }; extern struct spu_context_ops spu_hw_ops; extern struct spu_context_ops spu_backing_ops; struct spufs_inode_info { struct spu_context *i_ctx; struct spu_gang *i_gang; struct inode vfs_inode; int i_openers; }; #define SPUFS_I(inode) \ container_of(inode, struct spufs_inode_info, vfs_inode) extern struct tree_descr spufs_dir_contents[]; extern struct tree_descr spufs_dir_nosched_contents[]; /* system call implementation */ long spufs_run_spu(struct file *file, struct spu_context *ctx, u32 *npc, u32 *status); long spufs_create(struct nameidata *nd, unsigned int flags, mode_t mode); extern const struct file_operations spufs_context_fops; /* gang management */ struct spu_gang *alloc_spu_gang(void); struct spu_gang *get_spu_gang(struct spu_gang *gang); int put_spu_gang(struct spu_gang *gang); void spu_gang_remove_ctx(struct spu_gang *gang, struct spu_context *ctx); void spu_gang_add_ctx(struct spu_gang *gang, struct spu_context *ctx); /* fault handling */ int spufs_handle_class1(struct spu_context *ctx); /* context management */ extern atomic_t nr_spu_contexts; static inline void spu_acquire(struct spu_context *ctx) { mutex_lock(&ctx->state_mutex); } static inline void spu_release(struct spu_context *ctx) { mutex_unlock(&ctx->state_mutex); } struct spu_context * alloc_spu_context(struct spu_gang *gang); void destroy_spu_context(struct kref *kref); struct spu_context * get_spu_context(struct spu_context *ctx); int put_spu_context(struct spu_context *ctx); void spu_unmap_mappings(struct spu_context *ctx); void spu_forget(struct spu_context *ctx); int spu_acquire_runnable(struct spu_context *ctx, unsigned long flags); void spu_acquire_saved(struct spu_context *ctx); int spu_activate(struct spu_context *ctx, unsigned long flags); void spu_deactivate(struct spu_context *ctx); void spu_yield(struct spu_context *ctx); void spu_set_timeslice(struct spu_context *ctx); void spu_update_sched_info(struct spu_context *ctx); void __spu_update_sched_info(struct spu_context *ctx); int __init spu_sched_init(void); void __exit spu_sched_exit(void); extern char *isolated_loader; /* * spufs_wait * Same as wait_event_interruptible(), except that here * we need to call spu_release(ctx) before sleeping, and * then spu_acquire(ctx) when awoken. */ #define spufs_wait(wq, condition) \ ({ \ int __ret = 0; \ DEFINE_WAIT(__wait); \ for (;;) { \ prepare_to_wait(&(wq), &__wait, TASK_INTERRUPTIBLE); \ if (condition) \ break; \ if (signal_pending(current)) { \ __ret = -ERESTARTSYS; \ break; \ } \ spu_release(ctx); \ schedule(); \ spu_acquire(ctx); \ } \ finish_wait(&(wq), &__wait); \ __ret; \ }) size_t spu_wbox_write(struct spu_context *ctx, u32 data); size_t spu_ibox_read(struct spu_context *ctx, u32 *data); /* irq callback funcs. */ void spufs_ibox_callback(struct spu *spu); void spufs_wbox_callback(struct spu *spu); void spufs_stop_callback(struct spu *spu); void spufs_mfc_callback(struct spu *spu); void spufs_dma_callback(struct spu *spu, int type); extern struct spu_coredump_calls spufs_coredump_calls; struct spufs_coredump_reader { char *name; ssize_t (*read)(struct spu_context *ctx, char __user *buffer, size_t size, loff_t *pos); u64 (*get)(void *data); size_t size; }; extern struct spufs_coredump_reader spufs_coredump_read[]; extern int spufs_coredump_num_notes; /* * This function is a little bit too large for an inline, but * as fault.c is built into the kernel we can't move it out of * line. */ static inline void spuctx_switch_state(struct spu_context *ctx, enum spuctx_execution_state new_state) { WARN_ON(!mutex_is_locked(&ctx->state_mutex)); if (ctx->stats.execution_state != new_state) { unsigned long curtime = jiffies; ctx->stats.times[ctx->stats.execution_state] += curtime - ctx->stats.tstamp; ctx->stats.tstamp = curtime; ctx->stats.execution_state = new_state; } } static inline void spu_switch_state(struct spu *spu, enum spuctx_execution_state new_state) { if (spu->stats.utilization_state != new_state) { unsigned long curtime = jiffies; spu->stats.times[spu->stats.utilization_state] += curtime - spu->stats.tstamp; spu->stats.tstamp = curtime; spu->stats.utilization_state = new_state; } } #endif