/* * This file implements the DMA operations for NVLink devices. The NPU * devices all point to the same iommu table as the parent PCI device. * * Copyright Alistair Popple, IBM Corporation 2015. * * This program is free software; you can redistribute it and/or * modify it under the terms of version 2 of the GNU General Public * License as published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include "powernv.h" #include "pci.h" /* * Other types of TCE cache invalidation are not functional in the * hardware. */ #define TCE_KILL_INVAL_ALL PPC_BIT(0) static struct pci_dev *get_pci_dev(struct device_node *dn) { return PCI_DN(dn)->pcidev; } /* Given a NPU device get the associated PCI device. */ struct pci_dev *pnv_pci_get_gpu_dev(struct pci_dev *npdev) { struct device_node *dn; struct pci_dev *gpdev; /* Get assoicated PCI device */ dn = of_parse_phandle(npdev->dev.of_node, "ibm,gpu", 0); if (!dn) return NULL; gpdev = get_pci_dev(dn); of_node_put(dn); return gpdev; } EXPORT_SYMBOL(pnv_pci_get_gpu_dev); /* Given the real PCI device get a linked NPU device. */ struct pci_dev *pnv_pci_get_npu_dev(struct pci_dev *gpdev, int index) { struct device_node *dn; struct pci_dev *npdev; /* Get assoicated PCI device */ dn = of_parse_phandle(gpdev->dev.of_node, "ibm,npu", index); if (!dn) return NULL; npdev = get_pci_dev(dn); of_node_put(dn); return npdev; } EXPORT_SYMBOL(pnv_pci_get_npu_dev); #define NPU_DMA_OP_UNSUPPORTED() \ dev_err_once(dev, "%s operation unsupported for NVLink devices\n", \ __func__) static void *dma_npu_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag, struct dma_attrs *attrs) { NPU_DMA_OP_UNSUPPORTED(); return NULL; } static void dma_npu_free(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle, struct dma_attrs *attrs) { NPU_DMA_OP_UNSUPPORTED(); } static dma_addr_t dma_npu_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction direction, struct dma_attrs *attrs) { NPU_DMA_OP_UNSUPPORTED(); return 0; } static int dma_npu_map_sg(struct device *dev, struct scatterlist *sglist, int nelems, enum dma_data_direction direction, struct dma_attrs *attrs) { NPU_DMA_OP_UNSUPPORTED(); return 0; } static int dma_npu_dma_supported(struct device *dev, u64 mask) { NPU_DMA_OP_UNSUPPORTED(); return 0; } static u64 dma_npu_get_required_mask(struct device *dev) { NPU_DMA_OP_UNSUPPORTED(); return 0; } struct dma_map_ops dma_npu_ops = { .map_page = dma_npu_map_page, .map_sg = dma_npu_map_sg, .alloc = dma_npu_alloc, .free = dma_npu_free, .dma_supported = dma_npu_dma_supported, .get_required_mask = dma_npu_get_required_mask, }; /* * Returns the PE assoicated with the PCI device of the given * NPU. Returns the linked pci device if pci_dev != NULL. */ static struct pnv_ioda_pe *get_gpu_pci_dev_and_pe(struct pnv_ioda_pe *npe, struct pci_dev **gpdev) { struct pnv_phb *phb; struct pci_controller *hose; struct pci_dev *pdev; struct pnv_ioda_pe *pe; struct pci_dn *pdn; if (npe->flags & PNV_IODA_PE_PEER) { pe = npe->peers[0]; pdev = pe->pdev; } else { pdev = pnv_pci_get_gpu_dev(npe->pdev); if (!pdev) return NULL; pdn = pci_get_pdn(pdev); if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE)) return NULL; hose = pci_bus_to_host(pdev->bus); phb = hose->private_data; pe = &phb->ioda.pe_array[pdn->pe_number]; } if (gpdev) *gpdev = pdev; return pe; } void pnv_npu_tce_invalidate_entire(struct pnv_ioda_pe *npe) { struct pnv_phb *phb = npe->phb; if (WARN_ON(phb->type != PNV_PHB_NPU || !phb->ioda.tce_inval_reg || !(npe->flags & PNV_IODA_PE_DEV))) return; mb(); /* Ensure previous TCE table stores are visible */ __raw_writeq(cpu_to_be64(TCE_KILL_INVAL_ALL), phb->ioda.tce_inval_reg); } void pnv_npu_tce_invalidate(struct pnv_ioda_pe *npe, struct iommu_table *tbl, unsigned long index, unsigned long npages, bool rm) { struct pnv_phb *phb = npe->phb; /* We can only invalidate the whole cache on NPU */ unsigned long val = TCE_KILL_INVAL_ALL; if (WARN_ON(phb->type != PNV_PHB_NPU || !phb->ioda.tce_inval_reg || !(npe->flags & PNV_IODA_PE_DEV))) return; mb(); /* Ensure previous TCE table stores are visible */ if (rm) __raw_rm_writeq(cpu_to_be64(val), (__be64 __iomem *) phb->ioda.tce_inval_reg_phys); else __raw_writeq(cpu_to_be64(val), phb->ioda.tce_inval_reg); } void pnv_npu_init_dma_pe(struct pnv_ioda_pe *npe) { struct pnv_ioda_pe *gpe; struct pci_dev *gpdev; int i, avail = -1; if (!npe->pdev || !(npe->flags & PNV_IODA_PE_DEV)) return; gpe = get_gpu_pci_dev_and_pe(npe, &gpdev); if (!gpe) return; for (i = 0; i < PNV_IODA_MAX_PEER_PES; i++) { /* Nothing to do if the PE is already connected. */ if (gpe->peers[i] == npe) return; if (!gpe->peers[i]) avail = i; } if (WARN_ON(avail < 0)) return; gpe->peers[avail] = npe; gpe->flags |= PNV_IODA_PE_PEER; /* * We assume that the NPU devices only have a single peer PE * (the GPU PCIe device PE). */ npe->peers[0] = gpe; npe->flags |= PNV_IODA_PE_PEER; } /* * For the NPU we want to point the TCE table at the same table as the * real PCI device. */ static void pnv_npu_disable_bypass(struct pnv_ioda_pe *npe) { struct pnv_phb *phb = npe->phb; struct pci_dev *gpdev; struct pnv_ioda_pe *gpe; void *addr; unsigned int size; int64_t rc; /* * Find the assoicated PCI devices and get the dma window * information from there. */ if (!npe->pdev || !(npe->flags & PNV_IODA_PE_DEV)) return; gpe = get_gpu_pci_dev_and_pe(npe, &gpdev); if (!gpe) return; addr = (void *)gpe->table_group.tables[0]->it_base; size = gpe->table_group.tables[0]->it_size << 3; rc = opal_pci_map_pe_dma_window(phb->opal_id, npe->pe_number, npe->pe_number, 1, __pa(addr), size, 0x1000); if (rc != OPAL_SUCCESS) pr_warn("%s: Error %lld setting DMA window on PHB#%d-PE#%d\n", __func__, rc, phb->hose->global_number, npe->pe_number); /* * We don't initialise npu_pe->tce32_table as we always use * dma_npu_ops which are nops. */ set_dma_ops(&npe->pdev->dev, &dma_npu_ops); } /* * Enable/disable bypass mode on the NPU. The NPU only supports one * window per link, so bypass needs to be explicity enabled or * disabled. Unlike for a PHB3 bypass and non-bypass modes can't be * active at the same time. */ int pnv_npu_dma_set_bypass(struct pnv_ioda_pe *npe, bool enable) { struct pnv_phb *phb = npe->phb; int64_t rc = 0; if (phb->type != PNV_PHB_NPU || !npe->pdev) return -EINVAL; if (enable) { /* Enable the bypass window */ phys_addr_t top = memblock_end_of_DRAM(); npe->tce_bypass_base = 0; top = roundup_pow_of_two(top); dev_info(&npe->pdev->dev, "Enabling bypass for PE %d\n", npe->pe_number); rc = opal_pci_map_pe_dma_window_real(phb->opal_id, npe->pe_number, npe->pe_number, npe->tce_bypass_base, top); } else { /* * Disable the bypass window by replacing it with the * TCE32 window. */ pnv_npu_disable_bypass(npe); } return rc; } int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask) { struct pci_controller *hose = pci_bus_to_host(npdev->bus); struct pnv_phb *phb = hose->private_data; struct pci_dn *pdn = pci_get_pdn(npdev); struct pnv_ioda_pe *npe, *gpe; struct pci_dev *gpdev; uint64_t top; bool bypass = false; if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE)) return -ENXIO; /* We only do bypass if it's enabled on the linked device */ npe = &phb->ioda.pe_array[pdn->pe_number]; gpe = get_gpu_pci_dev_and_pe(npe, &gpdev); if (!gpe) return -ENODEV; if (gpe->tce_bypass_enabled) { top = gpe->tce_bypass_base + memblock_end_of_DRAM() - 1; bypass = (dma_mask >= top); } if (bypass) dev_info(&npdev->dev, "Using 64-bit DMA iommu bypass\n"); else dev_info(&npdev->dev, "Using 32-bit DMA via iommu\n"); pnv_npu_dma_set_bypass(npe, bypass); *npdev->dev.dma_mask = dma_mask; return 0; }