/* * c 2001 PPC 64 Team, IBM Corp * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * /dev/nvram driver for PPC64 * * This perhaps should live in drivers/char */ #include #include #include #include #include #include #include #include #include #include #include /* Max bytes to read/write in one go */ #define NVRW_CNT 0x20 static unsigned int nvram_size; static int nvram_fetch, nvram_store; static char nvram_buf[NVRW_CNT]; /* assume this is in the first 4GB */ static DEFINE_SPINLOCK(nvram_lock); /* See clobbering_unread_rtas_event() */ #define NVRAM_RTAS_READ_TIMEOUT 5 /* seconds */ static time64_t last_unread_rtas_event; /* timestamp */ #ifdef CONFIG_PSTORE time64_t last_rtas_event; #endif static ssize_t pSeries_nvram_read(char *buf, size_t count, loff_t *index) { unsigned int i; unsigned long len; int done; unsigned long flags; char *p = buf; if (nvram_size == 0 || nvram_fetch == RTAS_UNKNOWN_SERVICE) return -ENODEV; if (*index >= nvram_size) return 0; i = *index; if (i + count > nvram_size) count = nvram_size - i; spin_lock_irqsave(&nvram_lock, flags); for (; count != 0; count -= len) { len = count; if (len > NVRW_CNT) len = NVRW_CNT; if ((rtas_call(nvram_fetch, 3, 2, &done, i, __pa(nvram_buf), len) != 0) || len != done) { spin_unlock_irqrestore(&nvram_lock, flags); return -EIO; } memcpy(p, nvram_buf, len); p += len; i += len; } spin_unlock_irqrestore(&nvram_lock, flags); *index = i; return p - buf; } static ssize_t pSeries_nvram_write(char *buf, size_t count, loff_t *index) { unsigned int i; unsigned long len; int done; unsigned long flags; const char *p = buf; if (nvram_size == 0 || nvram_store == RTAS_UNKNOWN_SERVICE) return -ENODEV; if (*index >= nvram_size) return 0; i = *index; if (i + count > nvram_size) count = nvram_size - i; spin_lock_irqsave(&nvram_lock, flags); for (; count != 0; count -= len) { len = count; if (len > NVRW_CNT) len = NVRW_CNT; memcpy(nvram_buf, p, len); if ((rtas_call(nvram_store, 3, 2, &done, i, __pa(nvram_buf), len) != 0) || len != done) { spin_unlock_irqrestore(&nvram_lock, flags); return -EIO; } p += len; i += len; } spin_unlock_irqrestore(&nvram_lock, flags); *index = i; return p - buf; } static ssize_t pSeries_nvram_get_size(void) { return nvram_size ? nvram_size : -ENODEV; } /* nvram_write_error_log * * We need to buffer the error logs into nvram to ensure that we have * the failure information to decode. */ int nvram_write_error_log(char * buff, int length, unsigned int err_type, unsigned int error_log_cnt) { int rc = nvram_write_os_partition(&rtas_log_partition, buff, length, err_type, error_log_cnt); if (!rc) { last_unread_rtas_event = ktime_get_real_seconds(); #ifdef CONFIG_PSTORE last_rtas_event = ktime_get_real_seconds(); #endif } return rc; } /* nvram_read_error_log * * Reads nvram for error log for at most 'length' */ int nvram_read_error_log(char *buff, int length, unsigned int *err_type, unsigned int *error_log_cnt) { return nvram_read_partition(&rtas_log_partition, buff, length, err_type, error_log_cnt); } /* This doesn't actually zero anything, but it sets the event_logged * word to tell that this event is safely in syslog. */ int nvram_clear_error_log(void) { loff_t tmp_index; int clear_word = ERR_FLAG_ALREADY_LOGGED; int rc; if (rtas_log_partition.index == -1) return -1; tmp_index = rtas_log_partition.index; rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index); if (rc <= 0) { printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc); return rc; } last_unread_rtas_event = 0; return 0; } /* * Are we using the ibm,rtas-log for oops/panic reports? And if so, * would logging this oops/panic overwrite an RTAS event that rtas_errd * hasn't had a chance to read and process? Return 1 if so, else 0. * * We assume that if rtas_errd hasn't read the RTAS event in * NVRAM_RTAS_READ_TIMEOUT seconds, it's probably not going to. */ int clobbering_unread_rtas_event(void) { return (oops_log_partition.index == rtas_log_partition.index && last_unread_rtas_event && ktime_get_real_seconds() - last_unread_rtas_event <= NVRAM_RTAS_READ_TIMEOUT); } static int __init pseries_nvram_init_log_partitions(void) { int rc; /* Scan nvram for partitions */ nvram_scan_partitions(); rc = nvram_init_os_partition(&rtas_log_partition); nvram_init_oops_partition(rc == 0); return 0; } machine_arch_initcall(pseries, pseries_nvram_init_log_partitions); int __init pSeries_nvram_init(void) { struct device_node *nvram; const __be32 *nbytes_p; unsigned int proplen; nvram = of_find_node_by_type(NULL, "nvram"); if (nvram == NULL) return -ENODEV; nbytes_p = of_get_property(nvram, "#bytes", &proplen); if (nbytes_p == NULL || proplen != sizeof(unsigned int)) { of_node_put(nvram); return -EIO; } nvram_size = be32_to_cpup(nbytes_p); nvram_fetch = rtas_token("nvram-fetch"); nvram_store = rtas_token("nvram-store"); printk(KERN_INFO "PPC64 nvram contains %d bytes\n", nvram_size); of_node_put(nvram); ppc_md.nvram_read = pSeries_nvram_read; ppc_md.nvram_write = pSeries_nvram_write; ppc_md.nvram_size = pSeries_nvram_get_size; return 0; }