/* * processor_idle - idle state cpuidle driver. * Adapted from drivers/idle/intel_idle.c and * drivers/acpi/processor_idle.c * */ #include #include #include #include #include #include #include #include #include #include #include #include "plpar_wrappers.h" #include "pseries.h" struct cpuidle_driver pseries_idle_driver = { .name = "pseries_idle", .owner = THIS_MODULE, }; #define MAX_IDLE_STATE_COUNT 2 static int max_idle_state = MAX_IDLE_STATE_COUNT - 1; static struct cpuidle_device __percpu *pseries_cpuidle_devices; static struct cpuidle_state *cpuidle_state_table; void update_smt_snooze_delay(int snooze) { struct cpuidle_driver *drv = cpuidle_get_driver(); if (drv) drv->states[0].target_residency = snooze; } static inline void idle_loop_prolog(unsigned long *in_purr, ktime_t *kt_before) { *kt_before = ktime_get_real(); *in_purr = mfspr(SPRN_PURR); /* * Indicate to the HV that we are idle. Now would be * a good time to find other work to dispatch. */ get_lppaca()->idle = 1; } static inline s64 idle_loop_epilog(unsigned long in_purr, ktime_t kt_before) { get_lppaca()->wait_state_cycles += mfspr(SPRN_PURR) - in_purr; get_lppaca()->idle = 0; return ktime_to_us(ktime_sub(ktime_get_real(), kt_before)); } static int snooze_loop(struct cpuidle_device *dev, struct cpuidle_driver *drv, int index) { unsigned long in_purr; ktime_t kt_before; unsigned long start_snooze; long snooze = drv->states[0].target_residency; idle_loop_prolog(&in_purr, &kt_before); if (snooze) { start_snooze = get_tb() + snooze * tb_ticks_per_usec; local_irq_enable(); set_thread_flag(TIF_POLLING_NRFLAG); while ((snooze < 0) || (get_tb() < start_snooze)) { if (need_resched() || cpu_is_offline(dev->cpu)) goto out; ppc64_runlatch_off(); HMT_low(); HMT_very_low(); } HMT_medium(); clear_thread_flag(TIF_POLLING_NRFLAG); smp_mb(); local_irq_disable(); } out: HMT_medium(); dev->last_residency = (int)idle_loop_epilog(in_purr, kt_before); return index; } static void check_and_cede_processor(void) { /* * Interrupts are soft-disabled at this point, * but not hard disabled. So an interrupt might have * occurred before entering NAP, and would be potentially * lost (edge events, decrementer events, etc...) unless * we first hard disable then check. */ hard_irq_disable(); if (!lazy_irq_pending()) cede_processor(); } static int dedicated_cede_loop(struct cpuidle_device *dev, struct cpuidle_driver *drv, int index) { unsigned long in_purr; ktime_t kt_before; idle_loop_prolog(&in_purr, &kt_before); get_lppaca()->donate_dedicated_cpu = 1; ppc64_runlatch_off(); HMT_medium(); check_and_cede_processor(); get_lppaca()->donate_dedicated_cpu = 0; dev->last_residency = (int)idle_loop_epilog(in_purr, kt_before); return index; } static int shared_cede_loop(struct cpuidle_device *dev, struct cpuidle_driver *drv, int index) { unsigned long in_purr; ktime_t kt_before; idle_loop_prolog(&in_purr, &kt_before); /* * Yield the processor to the hypervisor. We return if * an external interrupt occurs (which are driven prior * to returning here) or if a prod occurs from another * processor. When returning here, external interrupts * are enabled. */ check_and_cede_processor(); dev->last_residency = (int)idle_loop_epilog(in_purr, kt_before); return index; } /* * States for dedicated partition case. */ static struct cpuidle_state dedicated_states[MAX_IDLE_STATE_COUNT] = { { /* Snooze */ .name = "snooze", .desc = "snooze", .flags = CPUIDLE_FLAG_TIME_VALID, .exit_latency = 0, .target_residency = 0, .enter = &snooze_loop }, { /* CEDE */ .name = "CEDE", .desc = "CEDE", .flags = CPUIDLE_FLAG_TIME_VALID, .exit_latency = 1, .target_residency = 10, .enter = &dedicated_cede_loop }, }; /* * States for shared partition case. */ static struct cpuidle_state shared_states[MAX_IDLE_STATE_COUNT] = { { /* Shared Cede */ .name = "Shared Cede", .desc = "Shared Cede", .flags = CPUIDLE_FLAG_TIME_VALID, .exit_latency = 0, .target_residency = 0, .enter = &shared_cede_loop }, }; int pseries_notify_cpuidle_add_cpu(int cpu) { struct cpuidle_device *dev = per_cpu_ptr(pseries_cpuidle_devices, cpu); if (dev && cpuidle_get_driver()) { cpuidle_disable_device(dev); cpuidle_enable_device(dev); } return 0; } /* * pseries_cpuidle_driver_init() */ static int pseries_cpuidle_driver_init(void) { int idle_state; struct cpuidle_driver *drv = &pseries_idle_driver; drv->state_count = 0; for (idle_state = 0; idle_state < MAX_IDLE_STATE_COUNT; ++idle_state) { if (idle_state > max_idle_state) break; /* is the state not enabled? */ if (cpuidle_state_table[idle_state].enter == NULL) continue; drv->states[drv->state_count] = /* structure copy */ cpuidle_state_table[idle_state]; if (cpuidle_state_table == dedicated_states) drv->states[drv->state_count].target_residency = __get_cpu_var(smt_snooze_delay); drv->state_count += 1; } return 0; } /* pseries_idle_devices_uninit(void) * unregister cpuidle devices and de-allocate memory */ static void pseries_idle_devices_uninit(void) { int i; struct cpuidle_device *dev; for_each_possible_cpu(i) { dev = per_cpu_ptr(pseries_cpuidle_devices, i); cpuidle_unregister_device(dev); } free_percpu(pseries_cpuidle_devices); return; } /* pseries_idle_devices_init() * allocate, initialize and register cpuidle device */ static int pseries_idle_devices_init(void) { int i; struct cpuidle_driver *drv = &pseries_idle_driver; struct cpuidle_device *dev; pseries_cpuidle_devices = alloc_percpu(struct cpuidle_device); if (pseries_cpuidle_devices == NULL) return -ENOMEM; for_each_possible_cpu(i) { dev = per_cpu_ptr(pseries_cpuidle_devices, i); dev->state_count = drv->state_count; dev->cpu = i; if (cpuidle_register_device(dev)) { printk(KERN_DEBUG \ "cpuidle_register_device %d failed!\n", i); return -EIO; } } return 0; } /* * pseries_idle_probe() * Choose state table for shared versus dedicated partition */ static int pseries_idle_probe(void) { if (!firmware_has_feature(FW_FEATURE_SPLPAR)) return -ENODEV; if (cpuidle_disable != IDLE_NO_OVERRIDE) return -ENODEV; if (max_idle_state == 0) { printk(KERN_DEBUG "pseries processor idle disabled.\n"); return -EPERM; } if (get_lppaca()->shared_proc) cpuidle_state_table = shared_states; else cpuidle_state_table = dedicated_states; return 0; } static int __init pseries_processor_idle_init(void) { int retval; retval = pseries_idle_probe(); if (retval) return retval; pseries_cpuidle_driver_init(); retval = cpuidle_register_driver(&pseries_idle_driver); if (retval) { printk(KERN_DEBUG "Registration of pseries driver failed.\n"); return retval; } retval = pseries_idle_devices_init(); if (retval) { pseries_idle_devices_uninit(); cpuidle_unregister_driver(&pseries_idle_driver); return retval; } printk(KERN_DEBUG "pseries_idle_driver registered\n"); return 0; } static void __exit pseries_processor_idle_exit(void) { pseries_idle_devices_uninit(); cpuidle_unregister_driver(&pseries_idle_driver); return; } module_init(pseries_processor_idle_init); module_exit(pseries_processor_idle_exit); MODULE_AUTHOR("Deepthi Dharwar "); MODULE_DESCRIPTION("Cpuidle driver for POWER"); MODULE_LICENSE("GPL");