/* * Copyright (C) 2001 Dave Engebretsen IBM Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include #include #include "pseries.h" static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX]; static DEFINE_SPINLOCK(ras_log_buf_lock); static int ras_check_exception_token; static void mce_process_errlog_event(struct irq_work *work); static struct irq_work mce_errlog_process_work = { .func = mce_process_errlog_event, }; #define EPOW_SENSOR_TOKEN 9 #define EPOW_SENSOR_INDEX 0 /* EPOW events counter variable */ static int num_epow_events; static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id); static irqreturn_t ras_epow_interrupt(int irq, void *dev_id); static irqreturn_t ras_error_interrupt(int irq, void *dev_id); /* RTAS pseries MCE errorlog section. */ struct pseries_mc_errorlog { __be32 fru_id; __be32 proc_id; u8 error_type; /* * sub_err_type (1 byte). Bit fields depends on error_type * * MSB0 * | * V * 01234567 * XXXXXXXX * * For error_type == MC_ERROR_TYPE_UE * XXXXXXXX * X 1: Permanent or Transient UE. * X 1: Effective address provided. * X 1: Logical address provided. * XX 2: Reserved. * XXX 3: Type of UE error. * * For error_type != MC_ERROR_TYPE_UE * XXXXXXXX * X 1: Effective address provided. * XXXXX 5: Reserved. * XX 2: Type of SLB/ERAT/TLB error. */ u8 sub_err_type; u8 reserved_1[6]; __be64 effective_address; __be64 logical_address; } __packed; /* RTAS pseries MCE error types */ #define MC_ERROR_TYPE_UE 0x00 #define MC_ERROR_TYPE_SLB 0x01 #define MC_ERROR_TYPE_ERAT 0x02 #define MC_ERROR_TYPE_TLB 0x04 #define MC_ERROR_TYPE_D_CACHE 0x05 #define MC_ERROR_TYPE_I_CACHE 0x07 /* RTAS pseries MCE error sub types */ #define MC_ERROR_UE_INDETERMINATE 0 #define MC_ERROR_UE_IFETCH 1 #define MC_ERROR_UE_PAGE_TABLE_WALK_IFETCH 2 #define MC_ERROR_UE_LOAD_STORE 3 #define MC_ERROR_UE_PAGE_TABLE_WALK_LOAD_STORE 4 #define MC_ERROR_SLB_PARITY 0 #define MC_ERROR_SLB_MULTIHIT 1 #define MC_ERROR_SLB_INDETERMINATE 2 #define MC_ERROR_ERAT_PARITY 1 #define MC_ERROR_ERAT_MULTIHIT 2 #define MC_ERROR_ERAT_INDETERMINATE 3 #define MC_ERROR_TLB_PARITY 1 #define MC_ERROR_TLB_MULTIHIT 2 #define MC_ERROR_TLB_INDETERMINATE 3 static inline u8 rtas_mc_error_sub_type(const struct pseries_mc_errorlog *mlog) { switch (mlog->error_type) { case MC_ERROR_TYPE_UE: return (mlog->sub_err_type & 0x07); case MC_ERROR_TYPE_SLB: case MC_ERROR_TYPE_ERAT: case MC_ERROR_TYPE_TLB: return (mlog->sub_err_type & 0x03); default: return 0; } } static inline u64 rtas_mc_get_effective_addr(const struct pseries_mc_errorlog *mlog) { __be64 addr = 0; switch (mlog->error_type) { case MC_ERROR_TYPE_UE: if (mlog->sub_err_type & 0x40) addr = mlog->effective_address; break; case MC_ERROR_TYPE_SLB: case MC_ERROR_TYPE_ERAT: case MC_ERROR_TYPE_TLB: if (mlog->sub_err_type & 0x80) addr = mlog->effective_address; default: break; } return be64_to_cpu(addr); } /* * Enable the hotplug interrupt late because processing them may touch other * devices or systems (e.g. hugepages) that have not been initialized at the * subsys stage. */ int __init init_ras_hotplug_IRQ(void) { struct device_node *np; /* Hotplug Events */ np = of_find_node_by_path("/event-sources/hot-plug-events"); if (np != NULL) { if (dlpar_workqueue_init() == 0) request_event_sources_irqs(np, ras_hotplug_interrupt, "RAS_HOTPLUG"); of_node_put(np); } return 0; } machine_late_initcall(pseries, init_ras_hotplug_IRQ); /* * Initialize handlers for the set of interrupts caused by hardware errors * and power system events. */ static int __init init_ras_IRQ(void) { struct device_node *np; ras_check_exception_token = rtas_token("check-exception"); /* Internal Errors */ np = of_find_node_by_path("/event-sources/internal-errors"); if (np != NULL) { request_event_sources_irqs(np, ras_error_interrupt, "RAS_ERROR"); of_node_put(np); } /* EPOW Events */ np = of_find_node_by_path("/event-sources/epow-events"); if (np != NULL) { request_event_sources_irqs(np, ras_epow_interrupt, "RAS_EPOW"); of_node_put(np); } return 0; } machine_subsys_initcall(pseries, init_ras_IRQ); #define EPOW_SHUTDOWN_NORMAL 1 #define EPOW_SHUTDOWN_ON_UPS 2 #define EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS 3 #define EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH 4 static void handle_system_shutdown(char event_modifier) { switch (event_modifier) { case EPOW_SHUTDOWN_NORMAL: pr_emerg("Power off requested\n"); orderly_poweroff(true); break; case EPOW_SHUTDOWN_ON_UPS: pr_emerg("Loss of system power detected. System is running on" " UPS/battery. Check RTAS error log for details\n"); orderly_poweroff(true); break; case EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS: pr_emerg("Loss of system critical functions detected. Check" " RTAS error log for details\n"); orderly_poweroff(true); break; case EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH: pr_emerg("High ambient temperature detected. Check RTAS" " error log for details\n"); orderly_poweroff(true); break; default: pr_err("Unknown power/cooling shutdown event (modifier = %d)\n", event_modifier); } } struct epow_errorlog { unsigned char sensor_value; unsigned char event_modifier; unsigned char extended_modifier; unsigned char reserved; unsigned char platform_reason; }; #define EPOW_RESET 0 #define EPOW_WARN_COOLING 1 #define EPOW_WARN_POWER 2 #define EPOW_SYSTEM_SHUTDOWN 3 #define EPOW_SYSTEM_HALT 4 #define EPOW_MAIN_ENCLOSURE 5 #define EPOW_POWER_OFF 7 static void rtas_parse_epow_errlog(struct rtas_error_log *log) { struct pseries_errorlog *pseries_log; struct epow_errorlog *epow_log; char action_code; char modifier; pseries_log = get_pseries_errorlog(log, PSERIES_ELOG_SECT_ID_EPOW); if (pseries_log == NULL) return; epow_log = (struct epow_errorlog *)pseries_log->data; action_code = epow_log->sensor_value & 0xF; /* bottom 4 bits */ modifier = epow_log->event_modifier & 0xF; /* bottom 4 bits */ switch (action_code) { case EPOW_RESET: if (num_epow_events) { pr_info("Non critical power/cooling issue cleared\n"); num_epow_events--; } break; case EPOW_WARN_COOLING: pr_info("Non-critical cooling issue detected. Check RTAS error" " log for details\n"); break; case EPOW_WARN_POWER: pr_info("Non-critical power issue detected. Check RTAS error" " log for details\n"); break; case EPOW_SYSTEM_SHUTDOWN: handle_system_shutdown(epow_log->event_modifier); break; case EPOW_SYSTEM_HALT: pr_emerg("Critical power/cooling issue detected. Check RTAS" " error log for details. Powering off.\n"); orderly_poweroff(true); break; case EPOW_MAIN_ENCLOSURE: case EPOW_POWER_OFF: pr_emerg("System about to lose power. Check RTAS error log " " for details. Powering off immediately.\n"); emergency_sync(); kernel_power_off(); break; default: pr_err("Unknown power/cooling event (action code = %d)\n", action_code); } /* Increment epow events counter variable */ if (action_code != EPOW_RESET) num_epow_events++; } static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id) { struct pseries_errorlog *pseries_log; struct pseries_hp_errorlog *hp_elog; spin_lock(&ras_log_buf_lock); rtas_call(ras_check_exception_token, 6, 1, NULL, RTAS_VECTOR_EXTERNAL_INTERRUPT, virq_to_hw(irq), RTAS_HOTPLUG_EVENTS, 0, __pa(&ras_log_buf), rtas_get_error_log_max()); pseries_log = get_pseries_errorlog((struct rtas_error_log *)ras_log_buf, PSERIES_ELOG_SECT_ID_HOTPLUG); hp_elog = (struct pseries_hp_errorlog *)pseries_log->data; /* * Since PCI hotplug is not currently supported on pseries, put PCI * hotplug events on the ras_log_buf to be handled by rtas_errd. */ if (hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_MEM || hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_CPU || hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_PMEM) queue_hotplug_event(hp_elog); else log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0); spin_unlock(&ras_log_buf_lock); return IRQ_HANDLED; } /* Handle environmental and power warning (EPOW) interrupts. */ static irqreturn_t ras_epow_interrupt(int irq, void *dev_id) { int status; int state; int critical; status = rtas_get_sensor_fast(EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX, &state); if (state > 3) critical = 1; /* Time Critical */ else critical = 0; spin_lock(&ras_log_buf_lock); status = rtas_call(ras_check_exception_token, 6, 1, NULL, RTAS_VECTOR_EXTERNAL_INTERRUPT, virq_to_hw(irq), RTAS_EPOW_WARNING, critical, __pa(&ras_log_buf), rtas_get_error_log_max()); log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0); rtas_parse_epow_errlog((struct rtas_error_log *)ras_log_buf); spin_unlock(&ras_log_buf_lock); return IRQ_HANDLED; } /* * Handle hardware error interrupts. * * RTAS check-exception is called to collect data on the exception. If * the error is deemed recoverable, we log a warning and return. * For nonrecoverable errors, an error is logged and we stop all processing * as quickly as possible in order to prevent propagation of the failure. */ static irqreturn_t ras_error_interrupt(int irq, void *dev_id) { struct rtas_error_log *rtas_elog; int status; int fatal; spin_lock(&ras_log_buf_lock); status = rtas_call(ras_check_exception_token, 6, 1, NULL, RTAS_VECTOR_EXTERNAL_INTERRUPT, virq_to_hw(irq), RTAS_INTERNAL_ERROR, 1 /* Time Critical */, __pa(&ras_log_buf), rtas_get_error_log_max()); rtas_elog = (struct rtas_error_log *)ras_log_buf; if (status == 0 && rtas_error_severity(rtas_elog) >= RTAS_SEVERITY_ERROR_SYNC) fatal = 1; else fatal = 0; /* format and print the extended information */ log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal); if (fatal) { pr_emerg("Fatal hardware error detected. Check RTAS error" " log for details. Powering off immediately\n"); emergency_sync(); kernel_power_off(); } else { pr_err("Recoverable hardware error detected\n"); } spin_unlock(&ras_log_buf_lock); return IRQ_HANDLED; } /* * Some versions of FWNMI place the buffer inside the 4kB page starting at * 0x7000. Other versions place it inside the rtas buffer. We check both. */ #define VALID_FWNMI_BUFFER(A) \ ((((A) >= 0x7000) && ((A) < 0x7ff0)) || \ (((A) >= rtas.base) && ((A) < (rtas.base + rtas.size - 16)))) static inline struct rtas_error_log *fwnmi_get_errlog(void) { return (struct rtas_error_log *)local_paca->mce_data_buf; } /* * Get the error information for errors coming through the * FWNMI vectors. The pt_regs' r3 will be updated to reflect * the actual r3 if possible, and a ptr to the error log entry * will be returned if found. * * Use one buffer mce_data_buf per cpu to store RTAS error. * * The mce_data_buf does not have any locks or protection around it, * if a second machine check comes in, or a system reset is done * before we have logged the error, then we will get corruption in the * error log. This is preferable over holding off on calling * ibm,nmi-interlock which would result in us checkstopping if a * second machine check did come in. */ static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs) { unsigned long *savep; struct rtas_error_log *h; /* Mask top two bits */ regs->gpr[3] &= ~(0x3UL << 62); if (!VALID_FWNMI_BUFFER(regs->gpr[3])) { printk(KERN_ERR "FWNMI: corrupt r3 0x%016lx\n", regs->gpr[3]); return NULL; } savep = __va(regs->gpr[3]); regs->gpr[3] = be64_to_cpu(savep[0]); /* restore original r3 */ h = (struct rtas_error_log *)&savep[1]; /* Use the per cpu buffer from paca to store rtas error log */ memset(local_paca->mce_data_buf, 0, RTAS_ERROR_LOG_MAX); if (!rtas_error_extended(h)) { memcpy(local_paca->mce_data_buf, h, sizeof(__u64)); } else { int len, error_log_length; error_log_length = 8 + rtas_error_extended_log_length(h); len = min_t(int, error_log_length, RTAS_ERROR_LOG_MAX); memcpy(local_paca->mce_data_buf, h, len); } return (struct rtas_error_log *)local_paca->mce_data_buf; } /* Call this when done with the data returned by FWNMI_get_errinfo. * It will release the saved data area for other CPUs in the * partition to receive FWNMI errors. */ static void fwnmi_release_errinfo(void) { int ret = rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL); if (ret != 0) printk(KERN_ERR "FWNMI: nmi-interlock failed: %d\n", ret); } int pSeries_system_reset_exception(struct pt_regs *regs) { #ifdef __LITTLE_ENDIAN__ /* * Some firmware byteswaps SRR registers and gives incorrect SRR1. Try * to detect the bad SRR1 pattern here. Flip the NIP back to correct * endian for reporting purposes. Unfortunately the MSR can't be fixed, * so clear it. It will be missing MSR_RI so we won't try to recover. */ if ((be64_to_cpu(regs->msr) & (MSR_LE|MSR_RI|MSR_DR|MSR_IR|MSR_ME|MSR_PR| MSR_ILE|MSR_HV|MSR_SF)) == (MSR_DR|MSR_SF)) { regs->nip = be64_to_cpu((__be64)regs->nip); regs->msr = 0; } #endif if (fwnmi_active) { struct rtas_error_log *errhdr = fwnmi_get_errinfo(regs); if (errhdr) { /* XXX Should look at FWNMI information */ } fwnmi_release_errinfo(); } if (smp_handle_nmi_ipi(regs)) return 1; return 0; /* need to perform reset */ } #define VAL_TO_STRING(ar, val) \ (((val) < ARRAY_SIZE(ar)) ? ar[(val)] : "Unknown") static void pseries_print_mce_info(struct pt_regs *regs, struct rtas_error_log *errp) { const char *level, *sevstr; struct pseries_errorlog *pseries_log; struct pseries_mc_errorlog *mce_log; u8 error_type, err_sub_type; u64 addr; u8 initiator = rtas_error_initiator(errp); int disposition = rtas_error_disposition(errp); static const char * const initiators[] = { "Unknown", "CPU", "PCI", "ISA", "Memory", "Power Mgmt", }; static const char * const mc_err_types[] = { "UE", "SLB", "ERAT", "TLB", "D-Cache", "Unknown", "I-Cache", }; static const char * const mc_ue_types[] = { "Indeterminate", "Instruction fetch", "Page table walk ifetch", "Load/Store", "Page table walk Load/Store", }; /* SLB sub errors valid values are 0x0, 0x1, 0x2 */ static const char * const mc_slb_types[] = { "Parity", "Multihit", "Indeterminate", }; /* TLB and ERAT sub errors valid values are 0x1, 0x2, 0x3 */ static const char * const mc_soft_types[] = { "Unknown", "Parity", "Multihit", "Indeterminate", }; if (!rtas_error_extended(errp)) { pr_err("Machine check interrupt: Missing extended error log\n"); return; } pseries_log = get_pseries_errorlog(errp, PSERIES_ELOG_SECT_ID_MCE); if (pseries_log == NULL) return; mce_log = (struct pseries_mc_errorlog *)pseries_log->data; error_type = mce_log->error_type; err_sub_type = rtas_mc_error_sub_type(mce_log); switch (rtas_error_severity(errp)) { case RTAS_SEVERITY_NO_ERROR: level = KERN_INFO; sevstr = "Harmless"; break; case RTAS_SEVERITY_WARNING: level = KERN_WARNING; sevstr = ""; break; case RTAS_SEVERITY_ERROR: case RTAS_SEVERITY_ERROR_SYNC: level = KERN_ERR; sevstr = "Severe"; break; case RTAS_SEVERITY_FATAL: default: level = KERN_ERR; sevstr = "Fatal"; break; } #ifdef CONFIG_PPC_BOOK3S_64 /* Display faulty slb contents for SLB errors. */ if (error_type == MC_ERROR_TYPE_SLB) slb_dump_contents(local_paca->mce_faulty_slbs); #endif printk("%s%s Machine check interrupt [%s]\n", level, sevstr, disposition == RTAS_DISP_FULLY_RECOVERED ? "Recovered" : "Not recovered"); if (user_mode(regs)) { printk("%s NIP: [%016lx] PID: %d Comm: %s\n", level, regs->nip, current->pid, current->comm); } else { printk("%s NIP [%016lx]: %pS\n", level, regs->nip, (void *)regs->nip); } printk("%s Initiator: %s\n", level, VAL_TO_STRING(initiators, initiator)); switch (error_type) { case MC_ERROR_TYPE_UE: printk("%s Error type: %s [%s]\n", level, VAL_TO_STRING(mc_err_types, error_type), VAL_TO_STRING(mc_ue_types, err_sub_type)); break; case MC_ERROR_TYPE_SLB: printk("%s Error type: %s [%s]\n", level, VAL_TO_STRING(mc_err_types, error_type), VAL_TO_STRING(mc_slb_types, err_sub_type)); break; case MC_ERROR_TYPE_ERAT: case MC_ERROR_TYPE_TLB: printk("%s Error type: %s [%s]\n", level, VAL_TO_STRING(mc_err_types, error_type), VAL_TO_STRING(mc_soft_types, err_sub_type)); break; default: printk("%s Error type: %s\n", level, VAL_TO_STRING(mc_err_types, error_type)); break; } addr = rtas_mc_get_effective_addr(mce_log); if (addr) printk("%s Effective address: %016llx\n", level, addr); } static int mce_handle_error(struct rtas_error_log *errp) { struct pseries_errorlog *pseries_log; struct pseries_mc_errorlog *mce_log; int disposition = rtas_error_disposition(errp); u8 error_type; if (!rtas_error_extended(errp)) goto out; pseries_log = get_pseries_errorlog(errp, PSERIES_ELOG_SECT_ID_MCE); if (pseries_log == NULL) goto out; mce_log = (struct pseries_mc_errorlog *)pseries_log->data; error_type = mce_log->error_type; #ifdef CONFIG_PPC_BOOK3S_64 if (disposition == RTAS_DISP_NOT_RECOVERED) { switch (error_type) { case MC_ERROR_TYPE_SLB: case MC_ERROR_TYPE_ERAT: /* * Store the old slb content in paca before flushing. * Print this when we go to virtual mode. * There are chances that we may hit MCE again if there * is a parity error on the SLB entry we trying to read * for saving. Hence limit the slb saving to single * level of recursion. */ if (local_paca->in_mce == 1) slb_save_contents(local_paca->mce_faulty_slbs); flush_and_reload_slb(); disposition = RTAS_DISP_FULLY_RECOVERED; rtas_set_disposition_recovered(errp); break; default: break; } } #endif out: return disposition; } /* * Process MCE rtas errlog event. */ static void mce_process_errlog_event(struct irq_work *work) { struct rtas_error_log *err; err = fwnmi_get_errlog(); log_error((char *)err, ERR_TYPE_RTAS_LOG, 0); } /* * See if we can recover from a machine check exception. * This is only called on power4 (or above) and only via * the Firmware Non-Maskable Interrupts (fwnmi) handler * which provides the error analysis for us. * * Return 1 if corrected (or delivered a signal). * Return 0 if there is nothing we can do. */ static int recover_mce(struct pt_regs *regs, struct rtas_error_log *err) { int recovered = 0; int disposition = rtas_error_disposition(err); pseries_print_mce_info(regs, err); if (!(regs->msr & MSR_RI)) { /* If MSR_RI isn't set, we cannot recover */ pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n"); recovered = 0; } else if (disposition == RTAS_DISP_FULLY_RECOVERED) { /* Platform corrected itself */ recovered = 1; } else if (disposition == RTAS_DISP_LIMITED_RECOVERY) { /* Platform corrected itself but could be degraded */ printk(KERN_ERR "MCE: limited recovery, system may " "be degraded\n"); recovered = 1; } else if (user_mode(regs) && !is_global_init(current) && rtas_error_severity(err) == RTAS_SEVERITY_ERROR_SYNC) { /* * If we received a synchronous error when in userspace * kill the task. Firmware may report details of the fail * asynchronously, so we can't rely on the target and type * fields being valid here. */ printk(KERN_ERR "MCE: uncorrectable error, killing task " "%s:%d\n", current->comm, current->pid); _exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip); recovered = 1; } /* Queue irq work to log this rtas event later. */ irq_work_queue(&mce_errlog_process_work); return recovered; } /* * Handle a machine check. * * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi) * should be present. If so the handler which called us tells us if the * error was recovered (never true if RI=0). * * On hardware prior to Power 4 these exceptions were asynchronous which * means we can't tell exactly where it occurred and so we can't recover. */ int pSeries_machine_check_exception(struct pt_regs *regs) { struct rtas_error_log *errp; if (fwnmi_active) { fwnmi_release_errinfo(); errp = fwnmi_get_errlog(); if (errp && recover_mce(regs, errp)) return 1; } return 0; } long pseries_machine_check_realmode(struct pt_regs *regs) { struct rtas_error_log *errp; int disposition; if (fwnmi_active) { errp = fwnmi_get_errinfo(regs); /* * Call to fwnmi_release_errinfo() in real mode causes kernel * to panic. Hence we will call it as soon as we go into * virtual mode. */ disposition = mce_handle_error(errp); if (disposition == RTAS_DISP_FULLY_RECOVERED) return 1; } return 0; }