/* * General Purpose functions for the global management of the * 8260 Communication Processor Module. * Copyright (c) 1999-2001 Dan Malek * Copyright (c) 2000 MontaVista Software, Inc (source@mvista.com) * 2.3.99 Updates * * 2006 (c) MontaVista Software, Inc. * Vitaly Bordug * Merged to arch/powerpc from arch/ppc/syslib/cpm2_common.c * * This file is licensed under the terms of the GNU General Public License * version 2. This program is licensed "as is" without any warranty of any * kind, whether express or implied. */ /* * * In addition to the individual control of the communication * channels, there are a few functions that globally affect the * communication processor. * * Buffer descriptors must be allocated from the dual ported memory * space. The allocator for that is here. When the communication * process is reset, we reclaim the memory available. There is * currently no deallocator for this memory. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef CONFIG_PPC_CPM_NEW_BINDING static void cpm2_dpinit(void); #endif cpm_cpm2_t __iomem *cpmp; /* Pointer to comm processor space */ /* We allocate this here because it is used almost exclusively for * the communication processor devices. */ cpm2_map_t __iomem *cpm2_immr; #define CPM_MAP_SIZE (0x40000) /* 256k - the PQ3 reserve this amount of space for CPM as it is larger than on PQ2 */ void cpm2_reset(void) { #ifdef CONFIG_PPC_85xx cpm2_immr = ioremap(CPM_MAP_ADDR, CPM_MAP_SIZE); #else cpm2_immr = ioremap(get_immrbase(), CPM_MAP_SIZE); #endif /* Reclaim the DP memory for our use. */ #ifdef CONFIG_PPC_CPM_NEW_BINDING cpm_muram_init(); #else cpm2_dpinit(); #endif /* Tell everyone where the comm processor resides. */ cpmp = &cpm2_immr->im_cpm; } /* Set a baud rate generator. This needs lots of work. There are * eight BRGs, which can be connected to the CPM channels or output * as clocks. The BRGs are in two different block of internal * memory mapped space. * The baud rate clock is the system clock divided by something. * It was set up long ago during the initial boot phase and is * is given to us. * Baud rate clocks are zero-based in the driver code (as that maps * to port numbers). Documentation uses 1-based numbering. */ #define BRG_INT_CLK (get_brgfreq()) #define BRG_UART_CLK (BRG_INT_CLK/16) /* This function is used by UARTS, or anything else that uses a 16x * oversampled clock. */ void cpm_setbrg(uint brg, uint rate) { u32 __iomem *bp; /* This is good enough to get SMCs running..... */ if (brg < 4) { bp = cpm2_map_size(im_brgc1, 16); } else { bp = cpm2_map_size(im_brgc5, 16); brg -= 4; } bp += brg; out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN); cpm2_unmap(bp); } /* This function is used to set high speed synchronous baud rate * clocks. */ void cpm2_fastbrg(uint brg, uint rate, int div16) { u32 __iomem *bp; u32 val; if (brg < 4) { bp = cpm2_map_size(im_brgc1, 16); } else { bp = cpm2_map_size(im_brgc5, 16); brg -= 4; } bp += brg; val = ((BRG_INT_CLK / rate) << 1) | CPM_BRG_EN; if (div16) val |= CPM_BRG_DIV16; out_be32(bp, val); cpm2_unmap(bp); } int cpm2_clk_setup(enum cpm_clk_target target, int clock, int mode) { int ret = 0; int shift; int i, bits = 0; cpmux_t __iomem *im_cpmux; u32 __iomem *reg; u32 mask = 7; u8 clk_map[][3] = { {CPM_CLK_FCC1, CPM_BRG5, 0}, {CPM_CLK_FCC1, CPM_BRG6, 1}, {CPM_CLK_FCC1, CPM_BRG7, 2}, {CPM_CLK_FCC1, CPM_BRG8, 3}, {CPM_CLK_FCC1, CPM_CLK9, 4}, {CPM_CLK_FCC1, CPM_CLK10, 5}, {CPM_CLK_FCC1, CPM_CLK11, 6}, {CPM_CLK_FCC1, CPM_CLK12, 7}, {CPM_CLK_FCC2, CPM_BRG5, 0}, {CPM_CLK_FCC2, CPM_BRG6, 1}, {CPM_CLK_FCC2, CPM_BRG7, 2}, {CPM_CLK_FCC2, CPM_BRG8, 3}, {CPM_CLK_FCC2, CPM_CLK13, 4}, {CPM_CLK_FCC2, CPM_CLK14, 5}, {CPM_CLK_FCC2, CPM_CLK15, 6}, {CPM_CLK_FCC2, CPM_CLK16, 7}, {CPM_CLK_FCC3, CPM_BRG5, 0}, {CPM_CLK_FCC3, CPM_BRG6, 1}, {CPM_CLK_FCC3, CPM_BRG7, 2}, {CPM_CLK_FCC3, CPM_BRG8, 3}, {CPM_CLK_FCC3, CPM_CLK13, 4}, {CPM_CLK_FCC3, CPM_CLK14, 5}, {CPM_CLK_FCC3, CPM_CLK15, 6}, {CPM_CLK_FCC3, CPM_CLK16, 7}, {CPM_CLK_SCC1, CPM_BRG1, 0}, {CPM_CLK_SCC1, CPM_BRG2, 1}, {CPM_CLK_SCC1, CPM_BRG3, 2}, {CPM_CLK_SCC1, CPM_BRG4, 3}, {CPM_CLK_SCC1, CPM_CLK11, 4}, {CPM_CLK_SCC1, CPM_CLK12, 5}, {CPM_CLK_SCC1, CPM_CLK3, 6}, {CPM_CLK_SCC1, CPM_CLK4, 7}, {CPM_CLK_SCC2, CPM_BRG1, 0}, {CPM_CLK_SCC2, CPM_BRG2, 1}, {CPM_CLK_SCC2, CPM_BRG3, 2}, {CPM_CLK_SCC2, CPM_BRG4, 3}, {CPM_CLK_SCC2, CPM_CLK11, 4}, {CPM_CLK_SCC2, CPM_CLK12, 5}, {CPM_CLK_SCC2, CPM_CLK3, 6}, {CPM_CLK_SCC2, CPM_CLK4, 7}, {CPM_CLK_SCC3, CPM_BRG1, 0}, {CPM_CLK_SCC3, CPM_BRG2, 1}, {CPM_CLK_SCC3, CPM_BRG3, 2}, {CPM_CLK_SCC3, CPM_BRG4, 3}, {CPM_CLK_SCC3, CPM_CLK5, 4}, {CPM_CLK_SCC3, CPM_CLK6, 5}, {CPM_CLK_SCC3, CPM_CLK7, 6}, {CPM_CLK_SCC3, CPM_CLK8, 7}, {CPM_CLK_SCC4, CPM_BRG1, 0}, {CPM_CLK_SCC4, CPM_BRG2, 1}, {CPM_CLK_SCC4, CPM_BRG3, 2}, {CPM_CLK_SCC4, CPM_BRG4, 3}, {CPM_CLK_SCC4, CPM_CLK5, 4}, {CPM_CLK_SCC4, CPM_CLK6, 5}, {CPM_CLK_SCC4, CPM_CLK7, 6}, {CPM_CLK_SCC4, CPM_CLK8, 7}, }; im_cpmux = cpm2_map(im_cpmux); switch (target) { case CPM_CLK_SCC1: reg = &im_cpmux->cmx_scr; shift = 24; case CPM_CLK_SCC2: reg = &im_cpmux->cmx_scr; shift = 16; break; case CPM_CLK_SCC3: reg = &im_cpmux->cmx_scr; shift = 8; break; case CPM_CLK_SCC4: reg = &im_cpmux->cmx_scr; shift = 0; break; case CPM_CLK_FCC1: reg = &im_cpmux->cmx_fcr; shift = 24; break; case CPM_CLK_FCC2: reg = &im_cpmux->cmx_fcr; shift = 16; break; case CPM_CLK_FCC3: reg = &im_cpmux->cmx_fcr; shift = 8; break; default: printk(KERN_ERR "cpm2_clock_setup: invalid clock target\n"); return -EINVAL; } if (mode == CPM_CLK_RX) shift += 3; for (i = 0; i < ARRAY_SIZE(clk_map); i++) { if (clk_map[i][0] == target && clk_map[i][1] == clock) { bits = clk_map[i][2]; break; } } if (i == ARRAY_SIZE(clk_map)) ret = -EINVAL; bits <<= shift; mask <<= shift; out_be32(reg, (in_be32(reg) & ~mask) | bits); cpm2_unmap(im_cpmux); return ret; } int cpm2_smc_clk_setup(enum cpm_clk_target target, int clock) { int ret = 0; int shift; int i, bits = 0; cpmux_t __iomem *im_cpmux; u8 __iomem *reg; u8 mask = 3; u8 clk_map[][3] = { {CPM_CLK_SMC1, CPM_BRG1, 0}, {CPM_CLK_SMC1, CPM_BRG7, 1}, {CPM_CLK_SMC1, CPM_CLK7, 2}, {CPM_CLK_SMC1, CPM_CLK9, 3}, {CPM_CLK_SMC2, CPM_BRG2, 0}, {CPM_CLK_SMC2, CPM_BRG8, 1}, {CPM_CLK_SMC2, CPM_CLK4, 2}, {CPM_CLK_SMC2, CPM_CLK15, 3}, }; im_cpmux = cpm2_map(im_cpmux); switch (target) { case CPM_CLK_SMC1: reg = &im_cpmux->cmx_smr; mask = 3; shift = 4; break; case CPM_CLK_SMC2: reg = &im_cpmux->cmx_smr; mask = 3; shift = 0; break; default: printk(KERN_ERR "cpm2_smc_clock_setup: invalid clock target\n"); return -EINVAL; } for (i = 0; i < ARRAY_SIZE(clk_map); i++) { if (clk_map[i][0] == target && clk_map[i][1] == clock) { bits = clk_map[i][2]; break; } } if (i == ARRAY_SIZE(clk_map)) ret = -EINVAL; bits <<= shift; mask <<= shift; out_8(reg, (in_8(reg) & ~mask) | bits); cpm2_unmap(im_cpmux); return ret; } #ifndef CONFIG_PPC_CPM_NEW_BINDING /* * dpalloc / dpfree bits. */ static spinlock_t cpm_dpmem_lock; /* 16 blocks should be enough to satisfy all requests * until the memory subsystem goes up... */ static rh_block_t cpm_boot_dpmem_rh_block[16]; static rh_info_t cpm_dpmem_info; static u8 __iomem *im_dprambase; static void cpm2_dpinit(void) { spin_lock_init(&cpm_dpmem_lock); /* initialize the info header */ rh_init(&cpm_dpmem_info, 1, sizeof(cpm_boot_dpmem_rh_block) / sizeof(cpm_boot_dpmem_rh_block[0]), cpm_boot_dpmem_rh_block); im_dprambase = cpm2_immr; /* Attach the usable dpmem area */ /* XXX: This is actually crap. CPM_DATAONLY_BASE and * CPM_DATAONLY_SIZE is only a subset of the available dpram. It * varies with the processor and the microcode patches activated. * But the following should be at least safe. */ rh_attach_region(&cpm_dpmem_info, CPM_DATAONLY_BASE, CPM_DATAONLY_SIZE); } /* This function returns an index into the DPRAM area. */ unsigned long cpm_dpalloc(uint size, uint align) { unsigned long start; unsigned long flags; spin_lock_irqsave(&cpm_dpmem_lock, flags); cpm_dpmem_info.alignment = align; start = rh_alloc(&cpm_dpmem_info, size, "commproc"); spin_unlock_irqrestore(&cpm_dpmem_lock, flags); return (uint)start; } EXPORT_SYMBOL(cpm_dpalloc); int cpm_dpfree(unsigned long offset) { int ret; unsigned long flags; spin_lock_irqsave(&cpm_dpmem_lock, flags); ret = rh_free(&cpm_dpmem_info, offset); spin_unlock_irqrestore(&cpm_dpmem_lock, flags); return ret; } EXPORT_SYMBOL(cpm_dpfree); /* not sure if this is ever needed */ unsigned long cpm_dpalloc_fixed(unsigned long offset, uint size, uint align) { unsigned long start; unsigned long flags; spin_lock_irqsave(&cpm_dpmem_lock, flags); cpm_dpmem_info.alignment = align; start = rh_alloc_fixed(&cpm_dpmem_info, offset, size, "commproc"); spin_unlock_irqrestore(&cpm_dpmem_lock, flags); return start; } EXPORT_SYMBOL(cpm_dpalloc_fixed); void cpm_dpdump(void) { rh_dump(&cpm_dpmem_info); } EXPORT_SYMBOL(cpm_dpdump); void *cpm_dpram_addr(unsigned long offset) { return (void *)(im_dprambase + offset); } EXPORT_SYMBOL(cpm_dpram_addr); #endif /* !CONFIG_PPC_CPM_NEW_BINDING */ struct cpm2_ioports { u32 dir, par, sor, odr, dat; u32 res[3]; }; void cpm2_set_pin(int port, int pin, int flags) { struct cpm2_ioports __iomem *iop = (struct cpm2_ioports __iomem *)&cpm2_immr->im_ioport; pin = 1 << (31 - pin); if (flags & CPM_PIN_OUTPUT) setbits32(&iop[port].dir, pin); else clrbits32(&iop[port].dir, pin); if (!(flags & CPM_PIN_GPIO)) setbits32(&iop[port].par, pin); else clrbits32(&iop[port].par, pin); if (flags & CPM_PIN_SECONDARY) setbits32(&iop[port].sor, pin); else clrbits32(&iop[port].sor, pin); if (flags & CPM_PIN_OPENDRAIN) setbits32(&iop[port].odr, pin); else clrbits32(&iop[port].odr, pin); }