/* * arch/ppc/platforms/pmac_nvram.c * * Copyright (C) 2002 Benjamin Herrenschmidt (benh@kernel.crashing.org) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Todo: - add support for the OF persistent properties */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DEBUG #ifdef DEBUG #define DBG(x...) printk(x) #else #define DBG(x...) #endif #define NVRAM_SIZE 0x2000 /* 8kB of non-volatile RAM */ #define CORE99_SIGNATURE 0x5a #define CORE99_ADLER_START 0x14 /* On Core99, nvram is either a sharp, a micron or an AMD flash */ #define SM_FLASH_STATUS_DONE 0x80 #define SM_FLASH_STATUS_ERR 0x38 #define SM_FLASH_CMD_ERASE_CONFIRM 0xd0 #define SM_FLASH_CMD_ERASE_SETUP 0x20 #define SM_FLASH_CMD_RESET 0xff #define SM_FLASH_CMD_WRITE_SETUP 0x40 #define SM_FLASH_CMD_CLEAR_STATUS 0x50 #define SM_FLASH_CMD_READ_STATUS 0x70 /* CHRP NVRAM header */ struct chrp_header { u8 signature; u8 cksum; u16 len; char name[12]; u8 data[0]; }; struct core99_header { struct chrp_header hdr; u32 adler; u32 generation; u32 reserved[2]; }; /* * Read and write the non-volatile RAM on PowerMacs and CHRP machines. */ static int nvram_naddrs; static volatile unsigned char *nvram_addr; static volatile unsigned char *nvram_data; static int nvram_mult, is_core_99; static int core99_bank = 0; static int nvram_partitions[3]; static DEFINE_SPINLOCK(nv_lock); extern int pmac_newworld; extern int system_running; static int (*core99_write_bank)(int bank, u8* datas); static int (*core99_erase_bank)(int bank); static char *nvram_image __pmacdata; static unsigned char __pmac core99_nvram_read_byte(int addr) { if (nvram_image == NULL) return 0xff; return nvram_image[addr]; } static void __pmac core99_nvram_write_byte(int addr, unsigned char val) { if (nvram_image == NULL) return; nvram_image[addr] = val; } static unsigned char __openfirmware direct_nvram_read_byte(int addr) { return in_8(&nvram_data[(addr & (NVRAM_SIZE - 1)) * nvram_mult]); } static void __openfirmware direct_nvram_write_byte(int addr, unsigned char val) { out_8(&nvram_data[(addr & (NVRAM_SIZE - 1)) * nvram_mult], val); } static unsigned char __pmac indirect_nvram_read_byte(int addr) { unsigned char val; unsigned long flags; spin_lock_irqsave(&nv_lock, flags); out_8(nvram_addr, addr >> 5); val = in_8(&nvram_data[(addr & 0x1f) << 4]); spin_unlock_irqrestore(&nv_lock, flags); return val; } static void __pmac indirect_nvram_write_byte(int addr, unsigned char val) { unsigned long flags; spin_lock_irqsave(&nv_lock, flags); out_8(nvram_addr, addr >> 5); out_8(&nvram_data[(addr & 0x1f) << 4], val); spin_unlock_irqrestore(&nv_lock, flags); } #ifdef CONFIG_ADB_PMU static void __pmac pmu_nvram_complete(struct adb_request *req) { if (req->arg) complete((struct completion *)req->arg); } static unsigned char __pmac pmu_nvram_read_byte(int addr) { struct adb_request req; DECLARE_COMPLETION(req_complete); req.arg = system_state == SYSTEM_RUNNING ? &req_complete : NULL; if (pmu_request(&req, pmu_nvram_complete, 3, PMU_READ_NVRAM, (addr >> 8) & 0xff, addr & 0xff)) return 0xff; if (system_state == SYSTEM_RUNNING) wait_for_completion(&req_complete); while (!req.complete) pmu_poll(); return req.reply[0]; } static void __pmac pmu_nvram_write_byte(int addr, unsigned char val) { struct adb_request req; DECLARE_COMPLETION(req_complete); req.arg = system_state == SYSTEM_RUNNING ? &req_complete : NULL; if (pmu_request(&req, pmu_nvram_complete, 4, PMU_WRITE_NVRAM, (addr >> 8) & 0xff, addr & 0xff, val)) return; if (system_state == SYSTEM_RUNNING) wait_for_completion(&req_complete); while (!req.complete) pmu_poll(); } #endif /* CONFIG_ADB_PMU */ static u8 __pmac chrp_checksum(struct chrp_header* hdr) { u8 *ptr; u16 sum = hdr->signature; for (ptr = (u8 *)&hdr->len; ptr < hdr->data; ptr++) sum += *ptr; while (sum > 0xFF) sum = (sum & 0xFF) + (sum>>8); return sum; } static u32 __pmac core99_calc_adler(u8 *buffer) { int cnt; u32 low, high; buffer += CORE99_ADLER_START; low = 1; high = 0; for (cnt=0; cnt<(NVRAM_SIZE-CORE99_ADLER_START); cnt++) { if ((cnt % 5000) == 0) { high %= 65521UL; high %= 65521UL; } low += buffer[cnt]; high += low; } low %= 65521UL; high %= 65521UL; return (high << 16) | low; } static u32 __pmac core99_check(u8* datas) { struct core99_header* hdr99 = (struct core99_header*)datas; if (hdr99->hdr.signature != CORE99_SIGNATURE) { DBG("Invalid signature\n"); return 0; } if (hdr99->hdr.cksum != chrp_checksum(&hdr99->hdr)) { DBG("Invalid checksum\n"); return 0; } if (hdr99->adler != core99_calc_adler(datas)) { DBG("Invalid adler\n"); return 0; } return hdr99->generation; } static int __pmac sm_erase_bank(int bank) { int stat, i; unsigned long timeout; u8* base = (u8 *)nvram_data + core99_bank*NVRAM_SIZE; DBG("nvram: Sharp/Micron Erasing bank %d...\n", bank); out_8(base, SM_FLASH_CMD_ERASE_SETUP); out_8(base, SM_FLASH_CMD_ERASE_CONFIRM); timeout = 0; do { if (++timeout > 1000000) { printk(KERN_ERR "nvram: Sharp/Miron flash erase timeout !\n"); break; } out_8(base, SM_FLASH_CMD_READ_STATUS); stat = in_8(base); } while (!(stat & SM_FLASH_STATUS_DONE)); out_8(base, SM_FLASH_CMD_CLEAR_STATUS); out_8(base, SM_FLASH_CMD_RESET); for (i=0; i 1000000) { printk(KERN_ERR "nvram: Sharp/Micron flash write timeout !\n"); break; } out_8(base, SM_FLASH_CMD_READ_STATUS); stat = in_8(base); } while (!(stat & SM_FLASH_STATUS_DONE)); if (!(stat & SM_FLASH_STATUS_DONE)) break; } out_8(base, SM_FLASH_CMD_CLEAR_STATUS); out_8(base, SM_FLASH_CMD_RESET); for (i=0; i 1000000) { printk(KERN_ERR "nvram: AMD flash erase timeout !\n"); break; } stat = in_8(base) ^ in_8(base); } while (stat != 0); /* Reset */ out_8(base, 0xf0); udelay(1); for (i=0; i 1000000) { printk(KERN_ERR "nvram: AMD flash write timeout !\n"); break; } stat = in_8(base) ^ in_8(base); } while (stat != 0); if (stat != 0) break; } /* Reset */ out_8(base, 0xf0); udelay(1); for (i=0; iname, "common")) nvram_partitions[pmac_nvram_OF] = offset + 0x10; if (!strcmp(hdr->name, "APL,MacOS75")) { nvram_partitions[pmac_nvram_XPRAM] = offset + 0x10; nvram_partitions[pmac_nvram_NR] = offset + 0x110; } offset += (hdr->len * 0x10); } while(offset < NVRAM_SIZE); } else { nvram_partitions[pmac_nvram_OF] = 0x1800; nvram_partitions[pmac_nvram_XPRAM] = 0x1300; nvram_partitions[pmac_nvram_NR] = 0x1400; } DBG("nvram: OF partition at 0x%x\n", nvram_partitions[pmac_nvram_OF]); DBG("nvram: XP partition at 0x%x\n", nvram_partitions[pmac_nvram_XPRAM]); DBG("nvram: NR partition at 0x%x\n", nvram_partitions[pmac_nvram_NR]); } static void __pmac core99_nvram_sync(void) { struct core99_header* hdr99; unsigned long flags; if (!is_core_99 || !nvram_data || !nvram_image) return; spin_lock_irqsave(&nv_lock, flags); if (!memcmp(nvram_image, (u8*)nvram_data + core99_bank*NVRAM_SIZE, NVRAM_SIZE)) goto bail; DBG("Updating nvram...\n"); hdr99 = (struct core99_header*)nvram_image; hdr99->generation++; hdr99->hdr.signature = CORE99_SIGNATURE; hdr99->hdr.cksum = chrp_checksum(&hdr99->hdr); hdr99->adler = core99_calc_adler(nvram_image); core99_bank = core99_bank ? 0 : 1; if (core99_erase_bank) if (core99_erase_bank(core99_bank)) { printk("nvram: Error erasing bank %d\n", core99_bank); goto bail; } if (core99_write_bank) if (core99_write_bank(core99_bank, nvram_image)) printk("nvram: Error writing bank %d\n", core99_bank); bail: spin_unlock_irqrestore(&nv_lock, flags); #ifdef DEBUG mdelay(2000); #endif } void __init pmac_nvram_init(void) { struct device_node *dp; nvram_naddrs = 0; dp = find_devices("nvram"); if (dp == NULL) { printk(KERN_ERR "Can't find NVRAM device\n"); return; } nvram_naddrs = dp->n_addrs; is_core_99 = device_is_compatible(dp, "nvram,flash"); if (is_core_99) { int i; u32 gen_bank0, gen_bank1; if (nvram_naddrs < 1) { printk(KERN_ERR "nvram: no address\n"); return; } nvram_image = alloc_bootmem(NVRAM_SIZE); if (nvram_image == NULL) { printk(KERN_ERR "nvram: can't allocate ram image\n"); return; } nvram_data = ioremap(dp->addrs[0].address, NVRAM_SIZE*2); nvram_naddrs = 1; /* Make sure we get the correct case */ DBG("nvram: Checking bank 0...\n"); gen_bank0 = core99_check((u8 *)nvram_data); gen_bank1 = core99_check((u8 *)nvram_data + NVRAM_SIZE); core99_bank = (gen_bank0 < gen_bank1) ? 1 : 0; DBG("nvram: gen0=%d, gen1=%d\n", gen_bank0, gen_bank1); DBG("nvram: Active bank is: %d\n", core99_bank); for (i=0; iaddrs[0].address + isa_mem_base, dp->addrs[0].size); nvram_mult = 1; ppc_md.nvram_read_val = direct_nvram_read_byte; ppc_md.nvram_write_val = direct_nvram_write_byte; } else if (nvram_naddrs == 1) { nvram_data = ioremap(dp->addrs[0].address, dp->addrs[0].size); nvram_mult = (dp->addrs[0].size + NVRAM_SIZE - 1) / NVRAM_SIZE; ppc_md.nvram_read_val = direct_nvram_read_byte; ppc_md.nvram_write_val = direct_nvram_write_byte; } else if (nvram_naddrs == 2) { nvram_addr = ioremap(dp->addrs[0].address, dp->addrs[0].size); nvram_data = ioremap(dp->addrs[1].address, dp->addrs[1].size); ppc_md.nvram_read_val = indirect_nvram_read_byte; ppc_md.nvram_write_val = indirect_nvram_write_byte; } else if (nvram_naddrs == 0 && sys_ctrler == SYS_CTRLER_PMU) { #ifdef CONFIG_ADB_PMU nvram_naddrs = -1; ppc_md.nvram_read_val = pmu_nvram_read_byte; ppc_md.nvram_write_val = pmu_nvram_write_byte; #endif /* CONFIG_ADB_PMU */ } else { printk(KERN_ERR "Don't know how to access NVRAM with %d addresses\n", nvram_naddrs); } lookup_partitions(); } int __pmac pmac_get_partition(int partition) { return nvram_partitions[partition]; } u8 __pmac pmac_xpram_read(int xpaddr) { int offset = nvram_partitions[pmac_nvram_XPRAM]; if (offset < 0) return 0xff; return ppc_md.nvram_read_val(xpaddr + offset); } void __pmac pmac_xpram_write(int xpaddr, u8 data) { int offset = nvram_partitions[pmac_nvram_XPRAM]; if (offset < 0) return; ppc_md.nvram_write_val(xpaddr + offset, data); } EXPORT_SYMBOL(pmac_get_partition); EXPORT_SYMBOL(pmac_xpram_read); EXPORT_SYMBOL(pmac_xpram_write);