/* * arch/ppc/platforms/mpc8260_pci9.c * * Workaround for device erratum PCI 9. * See Motorola's "XPC826xA Family Device Errata Reference." * The erratum applies to all 8260 family Hip4 processors. It is scheduled * to be fixed in HiP4 Rev C. Erratum PCI 9 states that a simultaneous PCI * inbound write transaction and PCI outbound read transaction can result in a * bus deadlock. The suggested workaround is to use the IDMA controller to * perform all reads from PCI configuration, memory, and I/O space. * * Author: andy_lowe@mvista.com * * 2003 (c) MontaVista Software, Inc. This file is licensed under * the terms of the GNU General Public License version 2. This program * is licensed "as is" without any warranty of any kind, whether express * or implied. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "m82xx_pci.h" #ifdef CONFIG_8260_PCI9 /*#include */ /* included in asm/io.h */ #define IDMA_XFER_BUF_SIZE 64 /* size of the IDMA transfer buffer */ /* define a structure for the IDMA dpram usage */ typedef struct idma_dpram_s { idma_t pram; /* IDMA parameter RAM */ u_char xfer_buf[IDMA_XFER_BUF_SIZE]; /* IDMA transfer buffer */ idma_bd_t bd; /* buffer descriptor */ } idma_dpram_t; /* define offsets relative to start of IDMA dpram */ #define IDMA_XFER_BUF_OFFSET (sizeof(idma_t)) #define IDMA_BD_OFFSET (sizeof(idma_t) + IDMA_XFER_BUF_SIZE) /* define globals */ static volatile idma_dpram_t *idma_dpram; /* Exactly one of CONFIG_8260_PCI9_IDMAn must be defined, * where n is 1, 2, 3, or 4. This selects the IDMA channel used for * the PCI9 workaround. */ #ifdef CONFIG_8260_PCI9_IDMA1 #define IDMA_CHAN 0 #define PROFF_IDMA PROFF_IDMA1_BASE #define IDMA_PAGE CPM_CR_IDMA1_PAGE #define IDMA_SBLOCK CPM_CR_IDMA1_SBLOCK #endif #ifdef CONFIG_8260_PCI9_IDMA2 #define IDMA_CHAN 1 #define PROFF_IDMA PROFF_IDMA2_BASE #define IDMA_PAGE CPM_CR_IDMA2_PAGE #define IDMA_SBLOCK CPM_CR_IDMA2_SBLOCK #endif #ifdef CONFIG_8260_PCI9_IDMA3 #define IDMA_CHAN 2 #define PROFF_IDMA PROFF_IDMA3_BASE #define IDMA_PAGE CPM_CR_IDMA3_PAGE #define IDMA_SBLOCK CPM_CR_IDMA3_SBLOCK #endif #ifdef CONFIG_8260_PCI9_IDMA4 #define IDMA_CHAN 3 #define PROFF_IDMA PROFF_IDMA4_BASE #define IDMA_PAGE CPM_CR_IDMA4_PAGE #define IDMA_SBLOCK CPM_CR_IDMA4_SBLOCK #endif void idma_pci9_init(void) { uint dpram_offset; volatile idma_t *pram; volatile im_idma_t *idma_reg; volatile cpm2_map_t *immap = cpm2_immr; /* allocate IDMA dpram */ dpram_offset = cpm_dpalloc(sizeof(idma_dpram_t), 64); idma_dpram = cpm_dpram_addr(dpram_offset); /* initialize the IDMA parameter RAM */ memset((void *)idma_dpram, 0, sizeof(idma_dpram_t)); pram = &idma_dpram->pram; pram->ibase = dpram_offset + IDMA_BD_OFFSET; pram->dpr_buf = dpram_offset + IDMA_XFER_BUF_OFFSET; pram->ss_max = 32; pram->dts = 32; /* initialize the IDMA_BASE pointer to the IDMA parameter RAM */ *((ushort *) &immap->im_dprambase[PROFF_IDMA]) = dpram_offset; /* initialize the IDMA registers */ idma_reg = (volatile im_idma_t *) &immap->im_sdma.sdma_idsr1; idma_reg[IDMA_CHAN].idmr = 0; /* mask all IDMA interrupts */ idma_reg[IDMA_CHAN].idsr = 0xff; /* clear all event flags */ printk("<4>Using IDMA%d for MPC8260 device erratum PCI 9 workaround\n", IDMA_CHAN + 1); return; } /* Use the IDMA controller to transfer data from I/O memory to local RAM. * The src address must be a physical address suitable for use by the DMA * controller with no translation. The dst address must be a kernel virtual * address. The dst address is translated to a physical address via * virt_to_phys(). * The sinc argument specifies whether or not the source address is incremented * by the DMA controller. The source address is incremented if and only if sinc * is non-zero. The destination address is always incremented since the * destination is always host RAM. */ static void idma_pci9_read(u8 *dst, u8 *src, int bytes, int unit_size, int sinc) { unsigned long flags; volatile idma_t *pram = &idma_dpram->pram; volatile idma_bd_t *bd = &idma_dpram->bd; volatile cpm2_map_t *immap = cpm2_immr; local_irq_save(flags); /* initialize IDMA parameter RAM for this transfer */ if (sinc) pram->dcm = IDMA_DCM_DMA_WRAP_64 | IDMA_DCM_SINC | IDMA_DCM_DINC | IDMA_DCM_SD_MEM2MEM; else pram->dcm = IDMA_DCM_DMA_WRAP_64 | IDMA_DCM_DINC | IDMA_DCM_SD_MEM2MEM; pram->ibdptr = pram->ibase; pram->sts = unit_size; pram->istate = 0; /* initialize the buffer descriptor */ bd->dst = virt_to_phys(dst); bd->src = (uint) src; bd->len = bytes; bd->flags = IDMA_BD_V | IDMA_BD_W | IDMA_BD_I | IDMA_BD_L | IDMA_BD_DGBL | IDMA_BD_DBO_BE | IDMA_BD_SBO_BE | IDMA_BD_SDTB; /* issue the START_IDMA command to the CP */ while (immap->im_cpm.cp_cpcr & CPM_CR_FLG); immap->im_cpm.cp_cpcr = mk_cr_cmd(IDMA_PAGE, IDMA_SBLOCK, 0, CPM_CR_START_IDMA) | CPM_CR_FLG; while (immap->im_cpm.cp_cpcr & CPM_CR_FLG); /* wait for transfer to complete */ while(bd->flags & IDMA_BD_V); local_irq_restore(flags); return; } /* Use the IDMA controller to transfer data from I/O memory to local RAM. * The dst address must be a physical address suitable for use by the DMA * controller with no translation. The src address must be a kernel virtual * address. The src address is translated to a physical address via * virt_to_phys(). * The dinc argument specifies whether or not the dest address is incremented * by the DMA controller. The source address is incremented if and only if sinc * is non-zero. The source address is always incremented since the * source is always host RAM. */ static void idma_pci9_write(u8 *dst, u8 *src, int bytes, int unit_size, int dinc) { unsigned long flags; volatile idma_t *pram = &idma_dpram->pram; volatile idma_bd_t *bd = &idma_dpram->bd; volatile cpm2_map_t *immap = cpm2_immr; local_irq_save(flags); /* initialize IDMA parameter RAM for this transfer */ if (dinc) pram->dcm = IDMA_DCM_DMA_WRAP_64 | IDMA_DCM_SINC | IDMA_DCM_DINC | IDMA_DCM_SD_MEM2MEM; else pram->dcm = IDMA_DCM_DMA_WRAP_64 | IDMA_DCM_SINC | IDMA_DCM_SD_MEM2MEM; pram->ibdptr = pram->ibase; pram->sts = unit_size; pram->istate = 0; /* initialize the buffer descriptor */ bd->dst = (uint) dst; bd->src = virt_to_phys(src); bd->len = bytes; bd->flags = IDMA_BD_V | IDMA_BD_W | IDMA_BD_I | IDMA_BD_L | IDMA_BD_DGBL | IDMA_BD_DBO_BE | IDMA_BD_SBO_BE | IDMA_BD_SDTB; /* issue the START_IDMA command to the CP */ while (immap->im_cpm.cp_cpcr & CPM_CR_FLG); immap->im_cpm.cp_cpcr = mk_cr_cmd(IDMA_PAGE, IDMA_SBLOCK, 0, CPM_CR_START_IDMA) | CPM_CR_FLG; while (immap->im_cpm.cp_cpcr & CPM_CR_FLG); /* wait for transfer to complete */ while(bd->flags & IDMA_BD_V); local_irq_restore(flags); return; } /* Same as idma_pci9_read, but 16-bit little-endian byte swapping is performed * if the unit_size is 2, and 32-bit little-endian byte swapping is performed if * the unit_size is 4. */ static void idma_pci9_read_le(u8 *dst, u8 *src, int bytes, int unit_size, int sinc) { int i; u8 *p; idma_pci9_read(dst, src, bytes, unit_size, sinc); switch(unit_size) { case 2: for (i = 0, p = dst; i < bytes; i += 2, p += 2) swab16s((u16 *) p); break; case 4: for (i = 0, p = dst; i < bytes; i += 4, p += 4) swab32s((u32 *) p); break; default: break; } } EXPORT_SYMBOL(idma_pci9_init); EXPORT_SYMBOL(idma_pci9_read); EXPORT_SYMBOL(idma_pci9_read_le); static inline int is_pci_mem(unsigned long addr) { if (addr >= M82xx_PCI_LOWER_MMIO && addr <= M82xx_PCI_UPPER_MMIO) return 1; if (addr >= M82xx_PCI_LOWER_MEM && addr <= M82xx_PCI_UPPER_MEM) return 1; return 0; } #define is_pci_mem(pa) ( (pa > 0x80000000) && (pa < 0xc0000000)) int readb(volatile unsigned char *addr) { u8 val; unsigned long pa = iopa((unsigned long) addr); if (!is_pci_mem(pa)) return in_8(addr); idma_pci9_read((u8 *)&val, (u8 *)pa, sizeof(val), sizeof(val), 0); return val; } int readw(volatile unsigned short *addr) { u16 val; unsigned long pa = iopa((unsigned long) addr); if (!is_pci_mem(pa)) return in_le16(addr); idma_pci9_read((u8 *)&val, (u8 *)pa, sizeof(val), sizeof(val), 0); return swab16(val); } unsigned readl(volatile unsigned *addr) { u32 val; unsigned long pa = iopa((unsigned long) addr); if (!is_pci_mem(pa)) return in_le32(addr); idma_pci9_read((u8 *)&val, (u8 *)pa, sizeof(val), sizeof(val), 0); return swab32(val); } int inb(unsigned port) { u8 val; u8 *addr = (u8 *)(port + _IO_BASE); idma_pci9_read((u8 *)&val, (u8 *)addr, sizeof(val), sizeof(val), 0); return val; } int inw(unsigned port) { u16 val; u8 *addr = (u8 *)(port + _IO_BASE); idma_pci9_read((u8 *)&val, (u8 *)addr, sizeof(val), sizeof(val), 0); return swab16(val); } unsigned inl(unsigned port) { u32 val; u8 *addr = (u8 *)(port + _IO_BASE); idma_pci9_read((u8 *)&val, (u8 *)addr, sizeof(val), sizeof(val), 0); return swab32(val); } void insb(unsigned port, void *buf, int ns) { u8 *addr = (u8 *)(port + _IO_BASE); idma_pci9_read((u8 *)buf, (u8 *)addr, ns*sizeof(u8), sizeof(u8), 0); } void insw(unsigned port, void *buf, int ns) { u8 *addr = (u8 *)(port + _IO_BASE); idma_pci9_read((u8 *)buf, (u8 *)addr, ns*sizeof(u16), sizeof(u16), 0); } void insl(unsigned port, void *buf, int nl) { u8 *addr = (u8 *)(port + _IO_BASE); idma_pci9_read((u8 *)buf, (u8 *)addr, nl*sizeof(u32), sizeof(u32), 0); } void insw_ns(unsigned port, void *buf, int ns) { u8 *addr = (u8 *)(port + _IO_BASE); idma_pci9_read((u8 *)buf, (u8 *)addr, ns*sizeof(u16), sizeof(u16), 0); } void insl_ns(unsigned port, void *buf, int nl) { u8 *addr = (u8 *)(port + _IO_BASE); idma_pci9_read((u8 *)buf, (u8 *)addr, nl*sizeof(u32), sizeof(u32), 0); } void *memcpy_fromio(void *dest, unsigned long src, size_t count) { unsigned long pa = iopa((unsigned long) src); if (is_pci_mem(pa)) idma_pci9_read((u8 *)dest, (u8 *)pa, count, 32, 1); else memcpy(dest, (void *)src, count); return dest; } EXPORT_SYMBOL(readb); EXPORT_SYMBOL(readw); EXPORT_SYMBOL(readl); EXPORT_SYMBOL(inb); EXPORT_SYMBOL(inw); EXPORT_SYMBOL(inl); EXPORT_SYMBOL(insb); EXPORT_SYMBOL(insw); EXPORT_SYMBOL(insl); EXPORT_SYMBOL(insw_ns); EXPORT_SYMBOL(insl_ns); EXPORT_SYMBOL(memcpy_fromio); #endif /* ifdef CONFIG_8260_PCI9 */ /* Indirect PCI routines adapted from arch/ppc/kernel/indirect_pci.c. * Copyright (C) 1998 Gabriel Paubert. */ #ifndef CONFIG_8260_PCI9 #define cfg_read(val, addr, type, op) *val = op((type)(addr)) #else #define cfg_read(val, addr, type, op) \ idma_pci9_read_le((u8*)(val),(u8*)(addr),sizeof(*(val)),sizeof(*(val)),0) #endif #define cfg_write(val, addr, type, op) op((type *)(addr), (val)) static int indirect_write_config(struct pci_bus *pbus, unsigned int devfn, int where, int size, u32 value) { struct pci_controller *hose = pbus->sysdata; u8 cfg_type = 0; if (ppc_md.pci_exclude_device) if (ppc_md.pci_exclude_device(pbus->number, devfn)) return PCIBIOS_DEVICE_NOT_FOUND; if (hose->set_cfg_type) if (pbus->number != hose->first_busno) cfg_type = 1; out_be32(hose->cfg_addr, (((where & 0xfc) | cfg_type) << 24) | (devfn << 16) | ((pbus->number - hose->bus_offset) << 8) | 0x80); switch (size) { case 1: cfg_write(value, hose->cfg_data + (where & 3), u8, out_8); break; case 2: cfg_write(value, hose->cfg_data + (where & 2), u16, out_le16); break; case 4: cfg_write(value, hose->cfg_data + (where & 0), u32, out_le32); break; } return PCIBIOS_SUCCESSFUL; } static int indirect_read_config(struct pci_bus *pbus, unsigned int devfn, int where, int size, u32 *value) { struct pci_controller *hose = pbus->sysdata; u8 cfg_type = 0; if (ppc_md.pci_exclude_device) if (ppc_md.pci_exclude_device(pbus->number, devfn)) return PCIBIOS_DEVICE_NOT_FOUND; if (hose->set_cfg_type) if (pbus->number != hose->first_busno) cfg_type = 1; out_be32(hose->cfg_addr, (((where & 0xfc) | cfg_type) << 24) | (devfn << 16) | ((pbus->number - hose->bus_offset) << 8) | 0x80); switch (size) { case 1: cfg_read(value, hose->cfg_data + (where & 3), u8 *, in_8); break; case 2: cfg_read(value, hose->cfg_data + (where & 2), u16 *, in_le16); break; case 4: cfg_read(value, hose->cfg_data + (where & 0), u32 *, in_le32); break; } return PCIBIOS_SUCCESSFUL; } static struct pci_ops indirect_pci_ops = { .read = indirect_read_config, .write = indirect_write_config, }; void setup_m8260_indirect_pci(struct pci_controller* hose, u32 cfg_addr, u32 cfg_data) { hose->ops = &indirect_pci_ops; hose->cfg_addr = (unsigned int *) ioremap(cfg_addr, 4); hose->cfg_data = (unsigned char *) ioremap(cfg_data, 4); }