/* * IBM PPC4xx DMA engine scatter/gather library * * Copyright 2002-2003 MontaVista Software Inc. * * Cleaned up and converted to new DCR access * Matt Porter * * Original code by Armin Kuster * and Pete Popov * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include void ppc4xx_set_sg_addr(int dmanr, phys_addr_t sg_addr) { if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { printk("ppc4xx_set_sg_addr: bad channel: %d\n", dmanr); return; } #ifdef PPC4xx_DMA_64BIT mtdcr(DCRN_ASGH0 + (dmanr * 0x8), (u32)(sg_addr >> 32)); #endif mtdcr(DCRN_ASG0 + (dmanr * 0x8), (u32)sg_addr); } /* * Add a new sgl descriptor to the end of a scatter/gather list * which was created by alloc_dma_handle(). * * For a memory to memory transfer, both dma addresses must be * valid. For a peripheral to memory transfer, one of the addresses * must be set to NULL, depending on the direction of the transfer: * memory to peripheral: set dst_addr to NULL, * peripheral to memory: set src_addr to NULL. */ int ppc4xx_add_dma_sgl(sgl_handle_t handle, phys_addr_t src_addr, phys_addr_t dst_addr, unsigned int count) { sgl_list_info_t *psgl = (sgl_list_info_t *) handle; ppc_dma_ch_t *p_dma_ch; if (!handle) { printk("ppc4xx_add_dma_sgl: null handle\n"); return DMA_STATUS_BAD_HANDLE; } if (psgl->dmanr >= MAX_PPC4xx_DMA_CHANNELS) { printk("ppc4xx_add_dma_sgl: bad channel: %d\n", psgl->dmanr); return DMA_STATUS_BAD_CHANNEL; } p_dma_ch = &dma_channels[psgl->dmanr]; #ifdef DEBUG_4xxDMA { int error = 0; unsigned int aligned = (unsigned) src_addr | (unsigned) dst_addr | count; switch (p_dma_ch->pwidth) { case PW_8: break; case PW_16: if (aligned & 0x1) error = 1; break; case PW_32: if (aligned & 0x3) error = 1; break; case PW_64: if (aligned & 0x7) error = 1; break; default: printk("ppc4xx_add_dma_sgl: invalid bus width: 0x%x\n", p_dma_ch->pwidth); return DMA_STATUS_GENERAL_ERROR; } if (error) printk ("Alignment warning: ppc4xx_add_dma_sgl src 0x%x dst 0x%x count 0x%x bus width var %d\n", src_addr, dst_addr, count, p_dma_ch->pwidth); } #endif if ((unsigned) (psgl->ptail + 1) >= ((unsigned) psgl + SGL_LIST_SIZE)) { printk("sgl handle out of memory \n"); return DMA_STATUS_OUT_OF_MEMORY; } if (!psgl->ptail) { psgl->phead = (ppc_sgl_t *) ((unsigned) psgl + sizeof (sgl_list_info_t)); psgl->phead_dma = psgl->dma_addr + sizeof(sgl_list_info_t); psgl->ptail = psgl->phead; psgl->ptail_dma = psgl->phead_dma; } else { if(p_dma_ch->int_on_final_sg) { /* mask out all dma interrupts, except error, on tail before adding new tail. */ psgl->ptail->control_count &= ~(SG_TCI_ENABLE | SG_ETI_ENABLE); } psgl->ptail->next = psgl->ptail_dma + sizeof(ppc_sgl_t); psgl->ptail++; psgl->ptail_dma += sizeof(ppc_sgl_t); } psgl->ptail->control = psgl->control; psgl->ptail->src_addr = src_addr; psgl->ptail->dst_addr = dst_addr; psgl->ptail->control_count = (count >> p_dma_ch->shift) | psgl->sgl_control; psgl->ptail->next = (uint32_t) NULL; return DMA_STATUS_GOOD; } /* * Enable (start) the DMA described by the sgl handle. */ void ppc4xx_enable_dma_sgl(sgl_handle_t handle) { sgl_list_info_t *psgl = (sgl_list_info_t *) handle; ppc_dma_ch_t *p_dma_ch; uint32_t sg_command; if (!handle) { printk("ppc4xx_enable_dma_sgl: null handle\n"); return; } else if (psgl->dmanr > (MAX_PPC4xx_DMA_CHANNELS - 1)) { printk("ppc4xx_enable_dma_sgl: bad channel in handle %d\n", psgl->dmanr); return; } else if (!psgl->phead) { printk("ppc4xx_enable_dma_sgl: sg list empty\n"); return; } p_dma_ch = &dma_channels[psgl->dmanr]; psgl->ptail->control_count &= ~SG_LINK; /* make this the last dscrptr */ sg_command = mfdcr(DCRN_ASGC); ppc4xx_set_sg_addr(psgl->dmanr, psgl->phead_dma); sg_command |= SSG_ENABLE(psgl->dmanr); mtdcr(DCRN_ASGC, sg_command); /* start transfer */ } /* * Halt an active scatter/gather DMA operation. */ void ppc4xx_disable_dma_sgl(sgl_handle_t handle) { sgl_list_info_t *psgl = (sgl_list_info_t *) handle; uint32_t sg_command; if (!handle) { printk("ppc4xx_enable_dma_sgl: null handle\n"); return; } else if (psgl->dmanr > (MAX_PPC4xx_DMA_CHANNELS - 1)) { printk("ppc4xx_enable_dma_sgl: bad channel in handle %d\n", psgl->dmanr); return; } sg_command = mfdcr(DCRN_ASGC); sg_command &= ~SSG_ENABLE(psgl->dmanr); mtdcr(DCRN_ASGC, sg_command); /* stop transfer */ } /* * Returns number of bytes left to be transferred from the entire sgl list. * *src_addr and *dst_addr get set to the source/destination address of * the sgl descriptor where the DMA stopped. * * An sgl transfer must NOT be active when this function is called. */ int ppc4xx_get_dma_sgl_residue(sgl_handle_t handle, phys_addr_t * src_addr, phys_addr_t * dst_addr) { sgl_list_info_t *psgl = (sgl_list_info_t *) handle; ppc_dma_ch_t *p_dma_ch; ppc_sgl_t *pnext, *sgl_addr; uint32_t count_left; if (!handle) { printk("ppc4xx_get_dma_sgl_residue: null handle\n"); return DMA_STATUS_BAD_HANDLE; } else if (psgl->dmanr > (MAX_PPC4xx_DMA_CHANNELS - 1)) { printk("ppc4xx_get_dma_sgl_residue: bad channel in handle %d\n", psgl->dmanr); return DMA_STATUS_BAD_CHANNEL; } sgl_addr = (ppc_sgl_t *) __va(mfdcr(DCRN_ASG0 + (psgl->dmanr * 0x8))); count_left = mfdcr(DCRN_DMACT0 + (psgl->dmanr * 0x8)) & SG_COUNT_MASK; if (!sgl_addr) { printk("ppc4xx_get_dma_sgl_residue: sgl addr register is null\n"); goto error; } pnext = psgl->phead; while (pnext && ((unsigned) pnext < ((unsigned) psgl + SGL_LIST_SIZE) && (pnext != sgl_addr)) ) { pnext++; } if (pnext == sgl_addr) { /* found the sgl descriptor */ *src_addr = pnext->src_addr; *dst_addr = pnext->dst_addr; /* * Now search the remaining descriptors and add their count. * We already have the remaining count from this descriptor in * count_left. */ pnext++; while ((pnext != psgl->ptail) && ((unsigned) pnext < ((unsigned) psgl + SGL_LIST_SIZE)) ) { count_left += pnext->control_count & SG_COUNT_MASK; } if (pnext != psgl->ptail) { /* should never happen */ printk ("ppc4xx_get_dma_sgl_residue error (1) psgl->ptail 0x%x handle 0x%x\n", (unsigned int) psgl->ptail, (unsigned int) handle); goto error; } /* success */ p_dma_ch = &dma_channels[psgl->dmanr]; return (count_left << p_dma_ch->shift); /* count in bytes */ } else { /* this shouldn't happen */ printk ("get_dma_sgl_residue, unable to match current address 0x%x, handle 0x%x\n", (unsigned int) sgl_addr, (unsigned int) handle); } error: *src_addr = (phys_addr_t) NULL; *dst_addr = (phys_addr_t) NULL; return 0; } /* * Returns the address(es) of the buffer(s) contained in the head element of * the scatter/gather list. The element is removed from the scatter/gather * list and the next element becomes the head. * * This function should only be called when the DMA is not active. */ int ppc4xx_delete_dma_sgl_element(sgl_handle_t handle, phys_addr_t * src_dma_addr, phys_addr_t * dst_dma_addr) { sgl_list_info_t *psgl = (sgl_list_info_t *) handle; if (!handle) { printk("ppc4xx_delete_sgl_element: null handle\n"); return DMA_STATUS_BAD_HANDLE; } else if (psgl->dmanr > (MAX_PPC4xx_DMA_CHANNELS - 1)) { printk("ppc4xx_delete_sgl_element: bad channel in handle %d\n", psgl->dmanr); return DMA_STATUS_BAD_CHANNEL; } if (!psgl->phead) { printk("ppc4xx_delete_sgl_element: sgl list empty\n"); *src_dma_addr = (phys_addr_t) NULL; *dst_dma_addr = (phys_addr_t) NULL; return DMA_STATUS_SGL_LIST_EMPTY; } *src_dma_addr = (phys_addr_t) psgl->phead->src_addr; *dst_dma_addr = (phys_addr_t) psgl->phead->dst_addr; if (psgl->phead == psgl->ptail) { /* last descriptor on the list */ psgl->phead = NULL; psgl->ptail = NULL; } else { psgl->phead++; psgl->phead_dma += sizeof(ppc_sgl_t); } return DMA_STATUS_GOOD; } /* * Create a scatter/gather list handle. This is simply a structure which * describes a scatter/gather list. * * A handle is returned in "handle" which the driver should save in order to * be able to access this list later. A chunk of memory will be allocated * to be used by the API for internal management purposes, including managing * the sg list and allocating memory for the sgl descriptors. One page should * be more than enough for that purpose. Perhaps it's a bit wasteful to use * a whole page for a single sg list, but most likely there will be only one * sg list per channel. * * Interrupt notes: * Each sgl descriptor has a copy of the DMA control word which the DMA engine * loads in the control register. The control word has a "global" interrupt * enable bit for that channel. Interrupts are further qualified by a few bits * in the sgl descriptor count register. In order to setup an sgl, we have to * know ahead of time whether or not interrupts will be enabled at the completion * of the transfers. Thus, enable_dma_interrupt()/disable_dma_interrupt() MUST * be called before calling alloc_dma_handle(). If the interrupt mode will never * change after powerup, then enable_dma_interrupt()/disable_dma_interrupt() * do not have to be called -- interrupts will be enabled or disabled based * on how the channel was configured after powerup by the hw_init_dma_channel() * function. Each sgl descriptor will be setup to interrupt if an error occurs; * however, only the last descriptor will be setup to interrupt. Thus, an * interrupt will occur (if interrupts are enabled) only after the complete * sgl transfer is done. */ int ppc4xx_alloc_dma_handle(sgl_handle_t * phandle, unsigned int mode, unsigned int dmanr) { sgl_list_info_t *psgl=NULL; dma_addr_t dma_addr; ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr]; uint32_t sg_command; uint32_t ctc_settings; void *ret; if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { printk("ppc4xx_alloc_dma_handle: invalid channel 0x%x\n", dmanr); return DMA_STATUS_BAD_CHANNEL; } if (!phandle) { printk("ppc4xx_alloc_dma_handle: null handle pointer\n"); return DMA_STATUS_NULL_POINTER; } /* Get a page of memory, which is zeroed out by consistent_alloc() */ ret = dma_alloc_coherent(NULL, DMA_PPC4xx_SIZE, &dma_addr, GFP_KERNEL); if (ret != NULL) { memset(ret, 0, DMA_PPC4xx_SIZE); psgl = (sgl_list_info_t *) ret; } if (psgl == NULL) { *phandle = (sgl_handle_t) NULL; return DMA_STATUS_OUT_OF_MEMORY; } psgl->dma_addr = dma_addr; psgl->dmanr = dmanr; /* * Modify and save the control word. These words will be * written to each sgl descriptor. The DMA engine then * loads this control word into the control register * every time it reads a new descriptor. */ psgl->control = p_dma_ch->control; /* Clear all mode bits */ psgl->control &= ~(DMA_TM_MASK | DMA_TD); /* Save control word and mode */ psgl->control |= (mode | DMA_CE_ENABLE); /* In MM mode, we must set ETD/TCE */ if (mode == DMA_MODE_MM) psgl->control |= DMA_ETD_OUTPUT | DMA_TCE_ENABLE; if (p_dma_ch->int_enable) { /* Enable channel interrupt */ psgl->control |= DMA_CIE_ENABLE; } else { psgl->control &= ~DMA_CIE_ENABLE; } sg_command = mfdcr(DCRN_ASGC); sg_command |= SSG_MASK_ENABLE(dmanr); /* Enable SGL control access */ mtdcr(DCRN_ASGC, sg_command); psgl->sgl_control = SG_ERI_ENABLE | SG_LINK; /* keep control count register settings */ ctc_settings = mfdcr(DCRN_DMACT0 + (dmanr * 0x8)) & (DMA_CTC_BSIZ_MSK | DMA_CTC_BTEN); /*burst mode settings*/ psgl->sgl_control |= ctc_settings; if (p_dma_ch->int_enable) { if (p_dma_ch->tce_enable) psgl->sgl_control |= SG_TCI_ENABLE; else psgl->sgl_control |= SG_ETI_ENABLE; } *phandle = (sgl_handle_t) psgl; return DMA_STATUS_GOOD; } /* * Destroy a scatter/gather list handle that was created by alloc_dma_handle(). * The list must be empty (contain no elements). */ void ppc4xx_free_dma_handle(sgl_handle_t handle) { sgl_list_info_t *psgl = (sgl_list_info_t *) handle; if (!handle) { printk("ppc4xx_free_dma_handle: got NULL\n"); return; } else if (psgl->phead) { printk("ppc4xx_free_dma_handle: list not empty\n"); return; } else if (!psgl->dma_addr) { /* should never happen */ printk("ppc4xx_free_dma_handle: no dma address\n"); return; } dma_free_coherent(NULL, DMA_PPC4xx_SIZE, (void *) psgl, 0); } EXPORT_SYMBOL(ppc4xx_alloc_dma_handle); EXPORT_SYMBOL(ppc4xx_free_dma_handle); EXPORT_SYMBOL(ppc4xx_add_dma_sgl); EXPORT_SYMBOL(ppc4xx_delete_dma_sgl_element); EXPORT_SYMBOL(ppc4xx_enable_dma_sgl); EXPORT_SYMBOL(ppc4xx_disable_dma_sgl); EXPORT_SYMBOL(ppc4xx_get_dma_sgl_residue);