// SPDX-License-Identifier: GPL-2.0 /* BPF JIT compiler for RV64G * * Copyright(c) 2019 Björn Töpel * */ #include #include #include enum { RV_REG_ZERO = 0, /* The constant value 0 */ RV_REG_RA = 1, /* Return address */ RV_REG_SP = 2, /* Stack pointer */ RV_REG_GP = 3, /* Global pointer */ RV_REG_TP = 4, /* Thread pointer */ RV_REG_T0 = 5, /* Temporaries */ RV_REG_T1 = 6, RV_REG_T2 = 7, RV_REG_FP = 8, RV_REG_S1 = 9, /* Saved registers */ RV_REG_A0 = 10, /* Function argument/return values */ RV_REG_A1 = 11, /* Function arguments */ RV_REG_A2 = 12, RV_REG_A3 = 13, RV_REG_A4 = 14, RV_REG_A5 = 15, RV_REG_A6 = 16, RV_REG_A7 = 17, RV_REG_S2 = 18, /* Saved registers */ RV_REG_S3 = 19, RV_REG_S4 = 20, RV_REG_S5 = 21, RV_REG_S6 = 22, RV_REG_S7 = 23, RV_REG_S8 = 24, RV_REG_S9 = 25, RV_REG_S10 = 26, RV_REG_S11 = 27, RV_REG_T3 = 28, /* Temporaries */ RV_REG_T4 = 29, RV_REG_T5 = 30, RV_REG_T6 = 31, }; #define RV_REG_TCC RV_REG_A6 #define RV_REG_TCC_SAVED RV_REG_S6 /* Store A6 in S6 if program do calls */ static const int regmap[] = { [BPF_REG_0] = RV_REG_A5, [BPF_REG_1] = RV_REG_A0, [BPF_REG_2] = RV_REG_A1, [BPF_REG_3] = RV_REG_A2, [BPF_REG_4] = RV_REG_A3, [BPF_REG_5] = RV_REG_A4, [BPF_REG_6] = RV_REG_S1, [BPF_REG_7] = RV_REG_S2, [BPF_REG_8] = RV_REG_S3, [BPF_REG_9] = RV_REG_S4, [BPF_REG_FP] = RV_REG_S5, [BPF_REG_AX] = RV_REG_T0, }; enum { RV_CTX_F_SEEN_TAIL_CALL = 0, RV_CTX_F_SEEN_CALL = RV_REG_RA, RV_CTX_F_SEEN_S1 = RV_REG_S1, RV_CTX_F_SEEN_S2 = RV_REG_S2, RV_CTX_F_SEEN_S3 = RV_REG_S3, RV_CTX_F_SEEN_S4 = RV_REG_S4, RV_CTX_F_SEEN_S5 = RV_REG_S5, RV_CTX_F_SEEN_S6 = RV_REG_S6, }; struct rv_jit_context { struct bpf_prog *prog; u32 *insns; /* RV insns */ int ninsns; int epilogue_offset; int *offset; /* BPF to RV */ unsigned long flags; int stack_size; }; struct rv_jit_data { struct bpf_binary_header *header; u8 *image; struct rv_jit_context ctx; }; static u8 bpf_to_rv_reg(int bpf_reg, struct rv_jit_context *ctx) { u8 reg = regmap[bpf_reg]; switch (reg) { case RV_CTX_F_SEEN_S1: case RV_CTX_F_SEEN_S2: case RV_CTX_F_SEEN_S3: case RV_CTX_F_SEEN_S4: case RV_CTX_F_SEEN_S5: case RV_CTX_F_SEEN_S6: __set_bit(reg, &ctx->flags); } return reg; }; static bool seen_reg(int reg, struct rv_jit_context *ctx) { switch (reg) { case RV_CTX_F_SEEN_CALL: case RV_CTX_F_SEEN_S1: case RV_CTX_F_SEEN_S2: case RV_CTX_F_SEEN_S3: case RV_CTX_F_SEEN_S4: case RV_CTX_F_SEEN_S5: case RV_CTX_F_SEEN_S6: return test_bit(reg, &ctx->flags); } return false; } static void mark_fp(struct rv_jit_context *ctx) { __set_bit(RV_CTX_F_SEEN_S5, &ctx->flags); } static void mark_call(struct rv_jit_context *ctx) { __set_bit(RV_CTX_F_SEEN_CALL, &ctx->flags); } static bool seen_call(struct rv_jit_context *ctx) { return test_bit(RV_CTX_F_SEEN_CALL, &ctx->flags); } static void mark_tail_call(struct rv_jit_context *ctx) { __set_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags); } static bool seen_tail_call(struct rv_jit_context *ctx) { return test_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags); } static u8 rv_tail_call_reg(struct rv_jit_context *ctx) { mark_tail_call(ctx); if (seen_call(ctx)) { __set_bit(RV_CTX_F_SEEN_S6, &ctx->flags); return RV_REG_S6; } return RV_REG_A6; } static void emit(const u32 insn, struct rv_jit_context *ctx) { if (ctx->insns) ctx->insns[ctx->ninsns] = insn; ctx->ninsns++; } static u32 rv_r_insn(u8 funct7, u8 rs2, u8 rs1, u8 funct3, u8 rd, u8 opcode) { return (funct7 << 25) | (rs2 << 20) | (rs1 << 15) | (funct3 << 12) | (rd << 7) | opcode; } static u32 rv_i_insn(u16 imm11_0, u8 rs1, u8 funct3, u8 rd, u8 opcode) { return (imm11_0 << 20) | (rs1 << 15) | (funct3 << 12) | (rd << 7) | opcode; } static u32 rv_s_insn(u16 imm11_0, u8 rs2, u8 rs1, u8 funct3, u8 opcode) { u8 imm11_5 = imm11_0 >> 5, imm4_0 = imm11_0 & 0x1f; return (imm11_5 << 25) | (rs2 << 20) | (rs1 << 15) | (funct3 << 12) | (imm4_0 << 7) | opcode; } static u32 rv_sb_insn(u16 imm12_1, u8 rs2, u8 rs1, u8 funct3, u8 opcode) { u8 imm12 = ((imm12_1 & 0x800) >> 5) | ((imm12_1 & 0x3f0) >> 4); u8 imm4_1 = ((imm12_1 & 0xf) << 1) | ((imm12_1 & 0x400) >> 10); return (imm12 << 25) | (rs2 << 20) | (rs1 << 15) | (funct3 << 12) | (imm4_1 << 7) | opcode; } static u32 rv_u_insn(u32 imm31_12, u8 rd, u8 opcode) { return (imm31_12 << 12) | (rd << 7) | opcode; } static u32 rv_uj_insn(u32 imm20_1, u8 rd, u8 opcode) { u32 imm; imm = (imm20_1 & 0x80000) | ((imm20_1 & 0x3ff) << 9) | ((imm20_1 & 0x400) >> 2) | ((imm20_1 & 0x7f800) >> 11); return (imm << 12) | (rd << 7) | opcode; } static u32 rv_amo_insn(u8 funct5, u8 aq, u8 rl, u8 rs2, u8 rs1, u8 funct3, u8 rd, u8 opcode) { u8 funct7 = (funct5 << 2) | (aq << 1) | rl; return rv_r_insn(funct7, rs2, rs1, funct3, rd, opcode); } static u32 rv_addiw(u8 rd, u8 rs1, u16 imm11_0) { return rv_i_insn(imm11_0, rs1, 0, rd, 0x1b); } static u32 rv_addi(u8 rd, u8 rs1, u16 imm11_0) { return rv_i_insn(imm11_0, rs1, 0, rd, 0x13); } static u32 rv_addw(u8 rd, u8 rs1, u8 rs2) { return rv_r_insn(0, rs2, rs1, 0, rd, 0x3b); } static u32 rv_add(u8 rd, u8 rs1, u8 rs2) { return rv_r_insn(0, rs2, rs1, 0, rd, 0x33); } static u32 rv_subw(u8 rd, u8 rs1, u8 rs2) { return rv_r_insn(0x20, rs2, rs1, 0, rd, 0x3b); } static u32 rv_sub(u8 rd, u8 rs1, u8 rs2) { return rv_r_insn(0x20, rs2, rs1, 0, rd, 0x33); } static u32 rv_and(u8 rd, u8 rs1, u8 rs2) { return rv_r_insn(0, rs2, rs1, 7, rd, 0x33); } static u32 rv_or(u8 rd, u8 rs1, u8 rs2) { return rv_r_insn(0, rs2, rs1, 6, rd, 0x33); } static u32 rv_xor(u8 rd, u8 rs1, u8 rs2) { return rv_r_insn(0, rs2, rs1, 4, rd, 0x33); } static u32 rv_mulw(u8 rd, u8 rs1, u8 rs2) { return rv_r_insn(1, rs2, rs1, 0, rd, 0x3b); } static u32 rv_mul(u8 rd, u8 rs1, u8 rs2) { return rv_r_insn(1, rs2, rs1, 0, rd, 0x33); } static u32 rv_divuw(u8 rd, u8 rs1, u8 rs2) { return rv_r_insn(1, rs2, rs1, 5, rd, 0x3b); } static u32 rv_divu(u8 rd, u8 rs1, u8 rs2) { return rv_r_insn(1, rs2, rs1, 5, rd, 0x33); } static u32 rv_remuw(u8 rd, u8 rs1, u8 rs2) { return rv_r_insn(1, rs2, rs1, 7, rd, 0x3b); } static u32 rv_remu(u8 rd, u8 rs1, u8 rs2) { return rv_r_insn(1, rs2, rs1, 7, rd, 0x33); } static u32 rv_sllw(u8 rd, u8 rs1, u8 rs2) { return rv_r_insn(0, rs2, rs1, 1, rd, 0x3b); } static u32 rv_sll(u8 rd, u8 rs1, u8 rs2) { return rv_r_insn(0, rs2, rs1, 1, rd, 0x33); } static u32 rv_srlw(u8 rd, u8 rs1, u8 rs2) { return rv_r_insn(0, rs2, rs1, 5, rd, 0x3b); } static u32 rv_srl(u8 rd, u8 rs1, u8 rs2) { return rv_r_insn(0, rs2, rs1, 5, rd, 0x33); } static u32 rv_sraw(u8 rd, u8 rs1, u8 rs2) { return rv_r_insn(0x20, rs2, rs1, 5, rd, 0x3b); } static u32 rv_sra(u8 rd, u8 rs1, u8 rs2) { return rv_r_insn(0x20, rs2, rs1, 5, rd, 0x33); } static u32 rv_lui(u8 rd, u32 imm31_12) { return rv_u_insn(imm31_12, rd, 0x37); } static u32 rv_slli(u8 rd, u8 rs1, u16 imm11_0) { return rv_i_insn(imm11_0, rs1, 1, rd, 0x13); } static u32 rv_andi(u8 rd, u8 rs1, u16 imm11_0) { return rv_i_insn(imm11_0, rs1, 7, rd, 0x13); } static u32 rv_ori(u8 rd, u8 rs1, u16 imm11_0) { return rv_i_insn(imm11_0, rs1, 6, rd, 0x13); } static u32 rv_xori(u8 rd, u8 rs1, u16 imm11_0) { return rv_i_insn(imm11_0, rs1, 4, rd, 0x13); } static u32 rv_slliw(u8 rd, u8 rs1, u16 imm11_0) { return rv_i_insn(imm11_0, rs1, 1, rd, 0x1b); } static u32 rv_srliw(u8 rd, u8 rs1, u16 imm11_0) { return rv_i_insn(imm11_0, rs1, 5, rd, 0x1b); } static u32 rv_srli(u8 rd, u8 rs1, u16 imm11_0) { return rv_i_insn(imm11_0, rs1, 5, rd, 0x13); } static u32 rv_sraiw(u8 rd, u8 rs1, u16 imm11_0) { return rv_i_insn(0x400 | imm11_0, rs1, 5, rd, 0x1b); } static u32 rv_srai(u8 rd, u8 rs1, u16 imm11_0) { return rv_i_insn(0x400 | imm11_0, rs1, 5, rd, 0x13); } static u32 rv_jal(u8 rd, u32 imm20_1) { return rv_uj_insn(imm20_1, rd, 0x6f); } static u32 rv_jalr(u8 rd, u8 rs1, u16 imm11_0) { return rv_i_insn(imm11_0, rs1, 0, rd, 0x67); } static u32 rv_beq(u8 rs1, u8 rs2, u16 imm12_1) { return rv_sb_insn(imm12_1, rs2, rs1, 0, 0x63); } static u32 rv_bltu(u8 rs1, u8 rs2, u16 imm12_1) { return rv_sb_insn(imm12_1, rs2, rs1, 6, 0x63); } static u32 rv_bgeu(u8 rs1, u8 rs2, u16 imm12_1) { return rv_sb_insn(imm12_1, rs2, rs1, 7, 0x63); } static u32 rv_bne(u8 rs1, u8 rs2, u16 imm12_1) { return rv_sb_insn(imm12_1, rs2, rs1, 1, 0x63); } static u32 rv_blt(u8 rs1, u8 rs2, u16 imm12_1) { return rv_sb_insn(imm12_1, rs2, rs1, 4, 0x63); } static u32 rv_bge(u8 rs1, u8 rs2, u16 imm12_1) { return rv_sb_insn(imm12_1, rs2, rs1, 5, 0x63); } static u32 rv_sb(u8 rs1, u16 imm11_0, u8 rs2) { return rv_s_insn(imm11_0, rs2, rs1, 0, 0x23); } static u32 rv_sh(u8 rs1, u16 imm11_0, u8 rs2) { return rv_s_insn(imm11_0, rs2, rs1, 1, 0x23); } static u32 rv_sw(u8 rs1, u16 imm11_0, u8 rs2) { return rv_s_insn(imm11_0, rs2, rs1, 2, 0x23); } static u32 rv_sd(u8 rs1, u16 imm11_0, u8 rs2) { return rv_s_insn(imm11_0, rs2, rs1, 3, 0x23); } static u32 rv_lbu(u8 rd, u16 imm11_0, u8 rs1) { return rv_i_insn(imm11_0, rs1, 4, rd, 0x03); } static u32 rv_lhu(u8 rd, u16 imm11_0, u8 rs1) { return rv_i_insn(imm11_0, rs1, 5, rd, 0x03); } static u32 rv_lwu(u8 rd, u16 imm11_0, u8 rs1) { return rv_i_insn(imm11_0, rs1, 6, rd, 0x03); } static u32 rv_ld(u8 rd, u16 imm11_0, u8 rs1) { return rv_i_insn(imm11_0, rs1, 3, rd, 0x03); } static u32 rv_amoadd_w(u8 rd, u8 rs2, u8 rs1, u8 aq, u8 rl) { return rv_amo_insn(0, aq, rl, rs2, rs1, 2, rd, 0x2f); } static u32 rv_amoadd_d(u8 rd, u8 rs2, u8 rs1, u8 aq, u8 rl) { return rv_amo_insn(0, aq, rl, rs2, rs1, 3, rd, 0x2f); } static u32 rv_auipc(u8 rd, u32 imm31_12) { return rv_u_insn(imm31_12, rd, 0x17); } static bool is_12b_int(s64 val) { return -(1 << 11) <= val && val < (1 << 11); } static bool is_13b_int(s64 val) { return -(1 << 12) <= val && val < (1 << 12); } static bool is_21b_int(s64 val) { return -(1L << 20) <= val && val < (1L << 20); } static bool is_32b_int(s64 val) { return -(1L << 31) <= val && val < (1L << 31); } static int is_12b_check(int off, int insn) { if (!is_12b_int(off)) { pr_err("bpf-jit: insn=%d 12b < offset=%d not supported yet!\n", insn, (int)off); return -1; } return 0; } static void emit_imm(u8 rd, s64 val, struct rv_jit_context *ctx) { /* Note that the immediate from the add is sign-extended, * which means that we need to compensate this by adding 2^12, * when the 12th bit is set. A simpler way of doing this, and * getting rid of the check, is to just add 2**11 before the * shift. The "Loading a 32-Bit constant" example from the * "Computer Organization and Design, RISC-V edition" book by * Patterson/Hennessy highlights this fact. * * This also means that we need to process LSB to MSB. */ s64 upper = (val + (1 << 11)) >> 12, lower = val & 0xfff; int shift; if (is_32b_int(val)) { if (upper) emit(rv_lui(rd, upper), ctx); if (!upper) { emit(rv_addi(rd, RV_REG_ZERO, lower), ctx); return; } emit(rv_addiw(rd, rd, lower), ctx); return; } shift = __ffs(upper); upper >>= shift; shift += 12; emit_imm(rd, upper, ctx); emit(rv_slli(rd, rd, shift), ctx); if (lower) emit(rv_addi(rd, rd, lower), ctx); } static int rv_offset(int insn, int off, struct rv_jit_context *ctx) { int from, to; off++; /* BPF branch is from PC+1, RV is from PC */ from = (insn > 0) ? ctx->offset[insn - 1] : 0; to = (insn + off > 0) ? ctx->offset[insn + off - 1] : 0; return (to - from) << 2; } static int epilogue_offset(struct rv_jit_context *ctx) { int to = ctx->epilogue_offset, from = ctx->ninsns; return (to - from) << 2; } static void __build_epilogue(bool is_tail_call, struct rv_jit_context *ctx) { int stack_adjust = ctx->stack_size, store_offset = stack_adjust - 8; if (seen_reg(RV_REG_RA, ctx)) { emit(rv_ld(RV_REG_RA, store_offset, RV_REG_SP), ctx); store_offset -= 8; } emit(rv_ld(RV_REG_FP, store_offset, RV_REG_SP), ctx); store_offset -= 8; if (seen_reg(RV_REG_S1, ctx)) { emit(rv_ld(RV_REG_S1, store_offset, RV_REG_SP), ctx); store_offset -= 8; } if (seen_reg(RV_REG_S2, ctx)) { emit(rv_ld(RV_REG_S2, store_offset, RV_REG_SP), ctx); store_offset -= 8; } if (seen_reg(RV_REG_S3, ctx)) { emit(rv_ld(RV_REG_S3, store_offset, RV_REG_SP), ctx); store_offset -= 8; } if (seen_reg(RV_REG_S4, ctx)) { emit(rv_ld(RV_REG_S4, store_offset, RV_REG_SP), ctx); store_offset -= 8; } if (seen_reg(RV_REG_S5, ctx)) { emit(rv_ld(RV_REG_S5, store_offset, RV_REG_SP), ctx); store_offset -= 8; } if (seen_reg(RV_REG_S6, ctx)) { emit(rv_ld(RV_REG_S6, store_offset, RV_REG_SP), ctx); store_offset -= 8; } emit(rv_addi(RV_REG_SP, RV_REG_SP, stack_adjust), ctx); /* Set return value. */ if (!is_tail_call) emit(rv_addi(RV_REG_A0, RV_REG_A5, 0), ctx); emit(rv_jalr(RV_REG_ZERO, is_tail_call ? RV_REG_T3 : RV_REG_RA, is_tail_call ? 4 : 0), /* skip TCC init */ ctx); } /* return -1 or inverted cond */ static int invert_bpf_cond(u8 cond) { switch (cond) { case BPF_JEQ: return BPF_JNE; case BPF_JGT: return BPF_JLE; case BPF_JLT: return BPF_JGE; case BPF_JGE: return BPF_JLT; case BPF_JLE: return BPF_JGT; case BPF_JNE: return BPF_JEQ; case BPF_JSGT: return BPF_JSLE; case BPF_JSLT: return BPF_JSGE; case BPF_JSGE: return BPF_JSLT; case BPF_JSLE: return BPF_JSGT; } return -1; } static void emit_bcc(u8 cond, u8 rd, u8 rs, int rvoff, struct rv_jit_context *ctx) { switch (cond) { case BPF_JEQ: emit(rv_beq(rd, rs, rvoff >> 1), ctx); return; case BPF_JGT: emit(rv_bltu(rs, rd, rvoff >> 1), ctx); return; case BPF_JLT: emit(rv_bltu(rd, rs, rvoff >> 1), ctx); return; case BPF_JGE: emit(rv_bgeu(rd, rs, rvoff >> 1), ctx); return; case BPF_JLE: emit(rv_bgeu(rs, rd, rvoff >> 1), ctx); return; case BPF_JNE: emit(rv_bne(rd, rs, rvoff >> 1), ctx); return; case BPF_JSGT: emit(rv_blt(rs, rd, rvoff >> 1), ctx); return; case BPF_JSLT: emit(rv_blt(rd, rs, rvoff >> 1), ctx); return; case BPF_JSGE: emit(rv_bge(rd, rs, rvoff >> 1), ctx); return; case BPF_JSLE: emit(rv_bge(rs, rd, rvoff >> 1), ctx); } } static void emit_branch(u8 cond, u8 rd, u8 rs, int rvoff, struct rv_jit_context *ctx) { s64 upper, lower; if (is_13b_int(rvoff)) { emit_bcc(cond, rd, rs, rvoff, ctx); return; } /* Adjust for jal */ rvoff -= 4; /* Transform, e.g.: * bne rd,rs,foo * to * beq rd,rs,<.L1> * (auipc foo) * jal(r) foo * .L1 */ cond = invert_bpf_cond(cond); if (is_21b_int(rvoff)) { emit_bcc(cond, rd, rs, 8, ctx); emit(rv_jal(RV_REG_ZERO, rvoff >> 1), ctx); return; } /* 32b No need for an additional rvoff adjustment, since we * get that from the auipc at PC', where PC = PC' + 4. */ upper = (rvoff + (1 << 11)) >> 12; lower = rvoff & 0xfff; emit_bcc(cond, rd, rs, 12, ctx); emit(rv_auipc(RV_REG_T1, upper), ctx); emit(rv_jalr(RV_REG_ZERO, RV_REG_T1, lower), ctx); } static void emit_zext_32(u8 reg, struct rv_jit_context *ctx) { emit(rv_slli(reg, reg, 32), ctx); emit(rv_srli(reg, reg, 32), ctx); } static int emit_bpf_tail_call(int insn, struct rv_jit_context *ctx) { int tc_ninsn, off, start_insn = ctx->ninsns; u8 tcc = rv_tail_call_reg(ctx); /* a0: &ctx * a1: &array * a2: index * * if (index >= array->map.max_entries) * goto out; */ tc_ninsn = insn ? ctx->offset[insn] - ctx->offset[insn - 1] : ctx->offset[0]; emit_zext_32(RV_REG_A2, ctx); off = offsetof(struct bpf_array, map.max_entries); if (is_12b_check(off, insn)) return -1; emit(rv_lwu(RV_REG_T1, off, RV_REG_A1), ctx); off = (tc_ninsn - (ctx->ninsns - start_insn)) << 2; emit_branch(BPF_JGE, RV_REG_A2, RV_REG_T1, off, ctx); /* if (TCC-- < 0) * goto out; */ emit(rv_addi(RV_REG_T1, tcc, -1), ctx); off = (tc_ninsn - (ctx->ninsns - start_insn)) << 2; emit_branch(BPF_JSLT, tcc, RV_REG_ZERO, off, ctx); /* prog = array->ptrs[index]; * if (!prog) * goto out; */ emit(rv_slli(RV_REG_T2, RV_REG_A2, 3), ctx); emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_A1), ctx); off = offsetof(struct bpf_array, ptrs); if (is_12b_check(off, insn)) return -1; emit(rv_ld(RV_REG_T2, off, RV_REG_T2), ctx); off = (tc_ninsn - (ctx->ninsns - start_insn)) << 2; emit_branch(BPF_JEQ, RV_REG_T2, RV_REG_ZERO, off, ctx); /* goto *(prog->bpf_func + 4); */ off = offsetof(struct bpf_prog, bpf_func); if (is_12b_check(off, insn)) return -1; emit(rv_ld(RV_REG_T3, off, RV_REG_T2), ctx); emit(rv_addi(RV_REG_TCC, RV_REG_T1, 0), ctx); __build_epilogue(true, ctx); return 0; } static void init_regs(u8 *rd, u8 *rs, const struct bpf_insn *insn, struct rv_jit_context *ctx) { u8 code = insn->code; switch (code) { case BPF_JMP | BPF_JA: case BPF_JMP | BPF_CALL: case BPF_JMP | BPF_EXIT: case BPF_JMP | BPF_TAIL_CALL: break; default: *rd = bpf_to_rv_reg(insn->dst_reg, ctx); } if (code & (BPF_ALU | BPF_X) || code & (BPF_ALU64 | BPF_X) || code & (BPF_JMP | BPF_X) || code & (BPF_JMP32 | BPF_X) || code & BPF_LDX || code & BPF_STX) *rs = bpf_to_rv_reg(insn->src_reg, ctx); } static void emit_zext_32_rd_rs(u8 *rd, u8 *rs, struct rv_jit_context *ctx) { emit(rv_addi(RV_REG_T2, *rd, 0), ctx); emit_zext_32(RV_REG_T2, ctx); emit(rv_addi(RV_REG_T1, *rs, 0), ctx); emit_zext_32(RV_REG_T1, ctx); *rd = RV_REG_T2; *rs = RV_REG_T1; } static void emit_sext_32_rd_rs(u8 *rd, u8 *rs, struct rv_jit_context *ctx) { emit(rv_addiw(RV_REG_T2, *rd, 0), ctx); emit(rv_addiw(RV_REG_T1, *rs, 0), ctx); *rd = RV_REG_T2; *rs = RV_REG_T1; } static void emit_zext_32_rd_t1(u8 *rd, struct rv_jit_context *ctx) { emit(rv_addi(RV_REG_T2, *rd, 0), ctx); emit_zext_32(RV_REG_T2, ctx); emit_zext_32(RV_REG_T1, ctx); *rd = RV_REG_T2; } static void emit_sext_32_rd(u8 *rd, struct rv_jit_context *ctx) { emit(rv_addiw(RV_REG_T2, *rd, 0), ctx); *rd = RV_REG_T2; } static void emit_jump_and_link(u8 rd, s64 rvoff, bool force_jalr, struct rv_jit_context *ctx) { s64 upper, lower; if (rvoff && is_21b_int(rvoff) && !force_jalr) { emit(rv_jal(rd, rvoff >> 1), ctx); return; } upper = (rvoff + (1 << 11)) >> 12; lower = rvoff & 0xfff; emit(rv_auipc(RV_REG_T1, upper), ctx); emit(rv_jalr(rd, RV_REG_T1, lower), ctx); } static bool is_signed_bpf_cond(u8 cond) { return cond == BPF_JSGT || cond == BPF_JSLT || cond == BPF_JSGE || cond == BPF_JSLE; } static int emit_call(bool fixed, u64 addr, struct rv_jit_context *ctx) { s64 off = 0; u64 ip; u8 rd; if (addr && ctx->insns) { ip = (u64)(long)(ctx->insns + ctx->ninsns); off = addr - ip; if (!is_32b_int(off)) { pr_err("bpf-jit: target call addr %pK is out of range\n", (void *)addr); return -ERANGE; } } emit_jump_and_link(RV_REG_RA, off, !fixed, ctx); rd = bpf_to_rv_reg(BPF_REG_0, ctx); emit(rv_addi(rd, RV_REG_A0, 0), ctx); return 0; } static int emit_insn(const struct bpf_insn *insn, struct rv_jit_context *ctx, bool extra_pass) { bool is64 = BPF_CLASS(insn->code) == BPF_ALU64 || BPF_CLASS(insn->code) == BPF_JMP; int s, e, rvoff, i = insn - ctx->prog->insnsi; struct bpf_prog_aux *aux = ctx->prog->aux; u8 rd = -1, rs = -1, code = insn->code; s16 off = insn->off; s32 imm = insn->imm; init_regs(&rd, &rs, insn, ctx); switch (code) { /* dst = src */ case BPF_ALU | BPF_MOV | BPF_X: case BPF_ALU64 | BPF_MOV | BPF_X: if (imm == 1) { /* Special mov32 for zext */ emit_zext_32(rd, ctx); break; } emit(is64 ? rv_addi(rd, rs, 0) : rv_addiw(rd, rs, 0), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; /* dst = dst OP src */ case BPF_ALU | BPF_ADD | BPF_X: case BPF_ALU64 | BPF_ADD | BPF_X: emit(is64 ? rv_add(rd, rd, rs) : rv_addw(rd, rd, rs), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_SUB | BPF_X: case BPF_ALU64 | BPF_SUB | BPF_X: emit(is64 ? rv_sub(rd, rd, rs) : rv_subw(rd, rd, rs), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_AND | BPF_X: case BPF_ALU64 | BPF_AND | BPF_X: emit(rv_and(rd, rd, rs), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_OR | BPF_X: case BPF_ALU64 | BPF_OR | BPF_X: emit(rv_or(rd, rd, rs), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_XOR | BPF_X: case BPF_ALU64 | BPF_XOR | BPF_X: emit(rv_xor(rd, rd, rs), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_MUL | BPF_X: case BPF_ALU64 | BPF_MUL | BPF_X: emit(is64 ? rv_mul(rd, rd, rs) : rv_mulw(rd, rd, rs), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_DIV | BPF_X: case BPF_ALU64 | BPF_DIV | BPF_X: emit(is64 ? rv_divu(rd, rd, rs) : rv_divuw(rd, rd, rs), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_MOD | BPF_X: case BPF_ALU64 | BPF_MOD | BPF_X: emit(is64 ? rv_remu(rd, rd, rs) : rv_remuw(rd, rd, rs), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_LSH | BPF_X: case BPF_ALU64 | BPF_LSH | BPF_X: emit(is64 ? rv_sll(rd, rd, rs) : rv_sllw(rd, rd, rs), ctx); if (!is64) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_RSH | BPF_X: case BPF_ALU64 | BPF_RSH | BPF_X: emit(is64 ? rv_srl(rd, rd, rs) : rv_srlw(rd, rd, rs), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_ARSH | BPF_X: case BPF_ALU64 | BPF_ARSH | BPF_X: emit(is64 ? rv_sra(rd, rd, rs) : rv_sraw(rd, rd, rs), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; /* dst = -dst */ case BPF_ALU | BPF_NEG: case BPF_ALU64 | BPF_NEG: emit(is64 ? rv_sub(rd, RV_REG_ZERO, rd) : rv_subw(rd, RV_REG_ZERO, rd), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; /* dst = BSWAP##imm(dst) */ case BPF_ALU | BPF_END | BPF_FROM_LE: { int shift = 64 - imm; emit(rv_slli(rd, rd, shift), ctx); emit(rv_srli(rd, rd, shift), ctx); break; } case BPF_ALU | BPF_END | BPF_FROM_BE: emit(rv_addi(RV_REG_T2, RV_REG_ZERO, 0), ctx); emit(rv_andi(RV_REG_T1, rd, 0xff), ctx); emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx); emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx); emit(rv_srli(rd, rd, 8), ctx); if (imm == 16) goto out_be; emit(rv_andi(RV_REG_T1, rd, 0xff), ctx); emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx); emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx); emit(rv_srli(rd, rd, 8), ctx); emit(rv_andi(RV_REG_T1, rd, 0xff), ctx); emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx); emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx); emit(rv_srli(rd, rd, 8), ctx); if (imm == 32) goto out_be; emit(rv_andi(RV_REG_T1, rd, 0xff), ctx); emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx); emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx); emit(rv_srli(rd, rd, 8), ctx); emit(rv_andi(RV_REG_T1, rd, 0xff), ctx); emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx); emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx); emit(rv_srli(rd, rd, 8), ctx); emit(rv_andi(RV_REG_T1, rd, 0xff), ctx); emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx); emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx); emit(rv_srli(rd, rd, 8), ctx); emit(rv_andi(RV_REG_T1, rd, 0xff), ctx); emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx); emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx); emit(rv_srli(rd, rd, 8), ctx); out_be: emit(rv_andi(RV_REG_T1, rd, 0xff), ctx); emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx); emit(rv_addi(rd, RV_REG_T2, 0), ctx); break; /* dst = imm */ case BPF_ALU | BPF_MOV | BPF_K: case BPF_ALU64 | BPF_MOV | BPF_K: emit_imm(rd, imm, ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; /* dst = dst OP imm */ case BPF_ALU | BPF_ADD | BPF_K: case BPF_ALU64 | BPF_ADD | BPF_K: if (is_12b_int(imm)) { emit(is64 ? rv_addi(rd, rd, imm) : rv_addiw(rd, rd, imm), ctx); } else { emit_imm(RV_REG_T1, imm, ctx); emit(is64 ? rv_add(rd, rd, RV_REG_T1) : rv_addw(rd, rd, RV_REG_T1), ctx); } if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_SUB | BPF_K: case BPF_ALU64 | BPF_SUB | BPF_K: if (is_12b_int(-imm)) { emit(is64 ? rv_addi(rd, rd, -imm) : rv_addiw(rd, rd, -imm), ctx); } else { emit_imm(RV_REG_T1, imm, ctx); emit(is64 ? rv_sub(rd, rd, RV_REG_T1) : rv_subw(rd, rd, RV_REG_T1), ctx); } if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_AND | BPF_K: case BPF_ALU64 | BPF_AND | BPF_K: if (is_12b_int(imm)) { emit(rv_andi(rd, rd, imm), ctx); } else { emit_imm(RV_REG_T1, imm, ctx); emit(rv_and(rd, rd, RV_REG_T1), ctx); } if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_OR | BPF_K: case BPF_ALU64 | BPF_OR | BPF_K: if (is_12b_int(imm)) { emit(rv_ori(rd, rd, imm), ctx); } else { emit_imm(RV_REG_T1, imm, ctx); emit(rv_or(rd, rd, RV_REG_T1), ctx); } if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_XOR | BPF_K: case BPF_ALU64 | BPF_XOR | BPF_K: if (is_12b_int(imm)) { emit(rv_xori(rd, rd, imm), ctx); } else { emit_imm(RV_REG_T1, imm, ctx); emit(rv_xor(rd, rd, RV_REG_T1), ctx); } if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_MUL | BPF_K: case BPF_ALU64 | BPF_MUL | BPF_K: emit_imm(RV_REG_T1, imm, ctx); emit(is64 ? rv_mul(rd, rd, RV_REG_T1) : rv_mulw(rd, rd, RV_REG_T1), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_DIV | BPF_K: case BPF_ALU64 | BPF_DIV | BPF_K: emit_imm(RV_REG_T1, imm, ctx); emit(is64 ? rv_divu(rd, rd, RV_REG_T1) : rv_divuw(rd, rd, RV_REG_T1), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_MOD | BPF_K: case BPF_ALU64 | BPF_MOD | BPF_K: emit_imm(RV_REG_T1, imm, ctx); emit(is64 ? rv_remu(rd, rd, RV_REG_T1) : rv_remuw(rd, rd, RV_REG_T1), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_LSH | BPF_K: case BPF_ALU64 | BPF_LSH | BPF_K: emit(is64 ? rv_slli(rd, rd, imm) : rv_slliw(rd, rd, imm), ctx); if (!is64) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_RSH | BPF_K: case BPF_ALU64 | BPF_RSH | BPF_K: emit(is64 ? rv_srli(rd, rd, imm) : rv_srliw(rd, rd, imm), ctx); if (!is64) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_ARSH | BPF_K: case BPF_ALU64 | BPF_ARSH | BPF_K: emit(is64 ? rv_srai(rd, rd, imm) : rv_sraiw(rd, rd, imm), ctx); if (!is64) emit_zext_32(rd, ctx); break; /* JUMP off */ case BPF_JMP | BPF_JA: rvoff = rv_offset(i, off, ctx); emit_jump_and_link(RV_REG_ZERO, rvoff, false, ctx); break; /* IF (dst COND src) JUMP off */ case BPF_JMP | BPF_JEQ | BPF_X: case BPF_JMP32 | BPF_JEQ | BPF_X: case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP32 | BPF_JGT | BPF_X: case BPF_JMP | BPF_JLT | BPF_X: case BPF_JMP32 | BPF_JLT | BPF_X: case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP32 | BPF_JGE | BPF_X: case BPF_JMP | BPF_JLE | BPF_X: case BPF_JMP32 | BPF_JLE | BPF_X: case BPF_JMP | BPF_JNE | BPF_X: case BPF_JMP32 | BPF_JNE | BPF_X: case BPF_JMP | BPF_JSGT | BPF_X: case BPF_JMP32 | BPF_JSGT | BPF_X: case BPF_JMP | BPF_JSLT | BPF_X: case BPF_JMP32 | BPF_JSLT | BPF_X: case BPF_JMP | BPF_JSGE | BPF_X: case BPF_JMP32 | BPF_JSGE | BPF_X: case BPF_JMP | BPF_JSLE | BPF_X: case BPF_JMP32 | BPF_JSLE | BPF_X: case BPF_JMP | BPF_JSET | BPF_X: case BPF_JMP32 | BPF_JSET | BPF_X: rvoff = rv_offset(i, off, ctx); if (!is64) { s = ctx->ninsns; if (is_signed_bpf_cond(BPF_OP(code))) emit_sext_32_rd_rs(&rd, &rs, ctx); else emit_zext_32_rd_rs(&rd, &rs, ctx); e = ctx->ninsns; /* Adjust for extra insns */ rvoff -= (e - s) << 2; } if (BPF_OP(code) == BPF_JSET) { /* Adjust for and */ rvoff -= 4; emit(rv_and(RV_REG_T1, rd, rs), ctx); emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff, ctx); } else { emit_branch(BPF_OP(code), rd, rs, rvoff, ctx); } break; /* IF (dst COND imm) JUMP off */ case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP32 | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP32 | BPF_JGT | BPF_K: case BPF_JMP | BPF_JLT | BPF_K: case BPF_JMP32 | BPF_JLT | BPF_K: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP32 | BPF_JGE | BPF_K: case BPF_JMP | BPF_JLE | BPF_K: case BPF_JMP32 | BPF_JLE | BPF_K: case BPF_JMP | BPF_JNE | BPF_K: case BPF_JMP32 | BPF_JNE | BPF_K: case BPF_JMP | BPF_JSGT | BPF_K: case BPF_JMP32 | BPF_JSGT | BPF_K: case BPF_JMP | BPF_JSLT | BPF_K: case BPF_JMP32 | BPF_JSLT | BPF_K: case BPF_JMP | BPF_JSGE | BPF_K: case BPF_JMP32 | BPF_JSGE | BPF_K: case BPF_JMP | BPF_JSLE | BPF_K: case BPF_JMP32 | BPF_JSLE | BPF_K: case BPF_JMP | BPF_JSET | BPF_K: case BPF_JMP32 | BPF_JSET | BPF_K: rvoff = rv_offset(i, off, ctx); s = ctx->ninsns; emit_imm(RV_REG_T1, imm, ctx); if (!is64) { if (is_signed_bpf_cond(BPF_OP(code))) emit_sext_32_rd(&rd, ctx); else emit_zext_32_rd_t1(&rd, ctx); } e = ctx->ninsns; /* Adjust for extra insns */ rvoff -= (e - s) << 2; if (BPF_OP(code) == BPF_JSET) { /* Adjust for and */ rvoff -= 4; emit(rv_and(RV_REG_T1, rd, RV_REG_T1), ctx); emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff, ctx); } else { emit_branch(BPF_OP(code), rd, RV_REG_T1, rvoff, ctx); } break; /* function call */ case BPF_JMP | BPF_CALL: { bool fixed; int ret; u64 addr; mark_call(ctx); ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass, &addr, &fixed); if (ret < 0) return ret; ret = emit_call(fixed, addr, ctx); if (ret) return ret; break; } /* tail call */ case BPF_JMP | BPF_TAIL_CALL: if (emit_bpf_tail_call(i, ctx)) return -1; break; /* function return */ case BPF_JMP | BPF_EXIT: if (i == ctx->prog->len - 1) break; rvoff = epilogue_offset(ctx); emit_jump_and_link(RV_REG_ZERO, rvoff, false, ctx); break; /* dst = imm64 */ case BPF_LD | BPF_IMM | BPF_DW: { struct bpf_insn insn1 = insn[1]; u64 imm64; imm64 = (u64)insn1.imm << 32 | (u32)imm; emit_imm(rd, imm64, ctx); return 1; } /* LDX: dst = *(size *)(src + off) */ case BPF_LDX | BPF_MEM | BPF_B: if (is_12b_int(off)) { emit(rv_lbu(rd, off, rs), ctx); break; } emit_imm(RV_REG_T1, off, ctx); emit(rv_add(RV_REG_T1, RV_REG_T1, rs), ctx); emit(rv_lbu(rd, 0, RV_REG_T1), ctx); if (insn_is_zext(&insn[1])) return 1; break; case BPF_LDX | BPF_MEM | BPF_H: if (is_12b_int(off)) { emit(rv_lhu(rd, off, rs), ctx); break; } emit_imm(RV_REG_T1, off, ctx); emit(rv_add(RV_REG_T1, RV_REG_T1, rs), ctx); emit(rv_lhu(rd, 0, RV_REG_T1), ctx); if (insn_is_zext(&insn[1])) return 1; break; case BPF_LDX | BPF_MEM | BPF_W: if (is_12b_int(off)) { emit(rv_lwu(rd, off, rs), ctx); break; } emit_imm(RV_REG_T1, off, ctx); emit(rv_add(RV_REG_T1, RV_REG_T1, rs), ctx); emit(rv_lwu(rd, 0, RV_REG_T1), ctx); if (insn_is_zext(&insn[1])) return 1; break; case BPF_LDX | BPF_MEM | BPF_DW: if (is_12b_int(off)) { emit(rv_ld(rd, off, rs), ctx); break; } emit_imm(RV_REG_T1, off, ctx); emit(rv_add(RV_REG_T1, RV_REG_T1, rs), ctx); emit(rv_ld(rd, 0, RV_REG_T1), ctx); break; /* ST: *(size *)(dst + off) = imm */ case BPF_ST | BPF_MEM | BPF_B: emit_imm(RV_REG_T1, imm, ctx); if (is_12b_int(off)) { emit(rv_sb(rd, off, RV_REG_T1), ctx); break; } emit_imm(RV_REG_T2, off, ctx); emit(rv_add(RV_REG_T2, RV_REG_T2, rd), ctx); emit(rv_sb(RV_REG_T2, 0, RV_REG_T1), ctx); break; case BPF_ST | BPF_MEM | BPF_H: emit_imm(RV_REG_T1, imm, ctx); if (is_12b_int(off)) { emit(rv_sh(rd, off, RV_REG_T1), ctx); break; } emit_imm(RV_REG_T2, off, ctx); emit(rv_add(RV_REG_T2, RV_REG_T2, rd), ctx); emit(rv_sh(RV_REG_T2, 0, RV_REG_T1), ctx); break; case BPF_ST | BPF_MEM | BPF_W: emit_imm(RV_REG_T1, imm, ctx); if (is_12b_int(off)) { emit(rv_sw(rd, off, RV_REG_T1), ctx); break; } emit_imm(RV_REG_T2, off, ctx); emit(rv_add(RV_REG_T2, RV_REG_T2, rd), ctx); emit(rv_sw(RV_REG_T2, 0, RV_REG_T1), ctx); break; case BPF_ST | BPF_MEM | BPF_DW: emit_imm(RV_REG_T1, imm, ctx); if (is_12b_int(off)) { emit(rv_sd(rd, off, RV_REG_T1), ctx); break; } emit_imm(RV_REG_T2, off, ctx); emit(rv_add(RV_REG_T2, RV_REG_T2, rd), ctx); emit(rv_sd(RV_REG_T2, 0, RV_REG_T1), ctx); break; /* STX: *(size *)(dst + off) = src */ case BPF_STX | BPF_MEM | BPF_B: if (is_12b_int(off)) { emit(rv_sb(rd, off, rs), ctx); break; } emit_imm(RV_REG_T1, off, ctx); emit(rv_add(RV_REG_T1, RV_REG_T1, rd), ctx); emit(rv_sb(RV_REG_T1, 0, rs), ctx); break; case BPF_STX | BPF_MEM | BPF_H: if (is_12b_int(off)) { emit(rv_sh(rd, off, rs), ctx); break; } emit_imm(RV_REG_T1, off, ctx); emit(rv_add(RV_REG_T1, RV_REG_T1, rd), ctx); emit(rv_sh(RV_REG_T1, 0, rs), ctx); break; case BPF_STX | BPF_MEM | BPF_W: if (is_12b_int(off)) { emit(rv_sw(rd, off, rs), ctx); break; } emit_imm(RV_REG_T1, off, ctx); emit(rv_add(RV_REG_T1, RV_REG_T1, rd), ctx); emit(rv_sw(RV_REG_T1, 0, rs), ctx); break; case BPF_STX | BPF_MEM | BPF_DW: if (is_12b_int(off)) { emit(rv_sd(rd, off, rs), ctx); break; } emit_imm(RV_REG_T1, off, ctx); emit(rv_add(RV_REG_T1, RV_REG_T1, rd), ctx); emit(rv_sd(RV_REG_T1, 0, rs), ctx); break; /* STX XADD: lock *(u32 *)(dst + off) += src */ case BPF_STX | BPF_XADD | BPF_W: /* STX XADD: lock *(u64 *)(dst + off) += src */ case BPF_STX | BPF_XADD | BPF_DW: if (off) { if (is_12b_int(off)) { emit(rv_addi(RV_REG_T1, rd, off), ctx); } else { emit_imm(RV_REG_T1, off, ctx); emit(rv_add(RV_REG_T1, RV_REG_T1, rd), ctx); } rd = RV_REG_T1; } emit(BPF_SIZE(code) == BPF_W ? rv_amoadd_w(RV_REG_ZERO, rs, rd, 0, 0) : rv_amoadd_d(RV_REG_ZERO, rs, rd, 0, 0), ctx); break; default: pr_err("bpf-jit: unknown opcode %02x\n", code); return -EINVAL; } return 0; } static void build_prologue(struct rv_jit_context *ctx) { int stack_adjust = 0, store_offset, bpf_stack_adjust; bpf_stack_adjust = round_up(ctx->prog->aux->stack_depth, 16); if (bpf_stack_adjust) mark_fp(ctx); if (seen_reg(RV_REG_RA, ctx)) stack_adjust += 8; stack_adjust += 8; /* RV_REG_FP */ if (seen_reg(RV_REG_S1, ctx)) stack_adjust += 8; if (seen_reg(RV_REG_S2, ctx)) stack_adjust += 8; if (seen_reg(RV_REG_S3, ctx)) stack_adjust += 8; if (seen_reg(RV_REG_S4, ctx)) stack_adjust += 8; if (seen_reg(RV_REG_S5, ctx)) stack_adjust += 8; if (seen_reg(RV_REG_S6, ctx)) stack_adjust += 8; stack_adjust = round_up(stack_adjust, 16); stack_adjust += bpf_stack_adjust; store_offset = stack_adjust - 8; /* First instruction is always setting the tail-call-counter * (TCC) register. This instruction is skipped for tail calls. */ emit(rv_addi(RV_REG_TCC, RV_REG_ZERO, MAX_TAIL_CALL_CNT), ctx); emit(rv_addi(RV_REG_SP, RV_REG_SP, -stack_adjust), ctx); if (seen_reg(RV_REG_RA, ctx)) { emit(rv_sd(RV_REG_SP, store_offset, RV_REG_RA), ctx); store_offset -= 8; } emit(rv_sd(RV_REG_SP, store_offset, RV_REG_FP), ctx); store_offset -= 8; if (seen_reg(RV_REG_S1, ctx)) { emit(rv_sd(RV_REG_SP, store_offset, RV_REG_S1), ctx); store_offset -= 8; } if (seen_reg(RV_REG_S2, ctx)) { emit(rv_sd(RV_REG_SP, store_offset, RV_REG_S2), ctx); store_offset -= 8; } if (seen_reg(RV_REG_S3, ctx)) { emit(rv_sd(RV_REG_SP, store_offset, RV_REG_S3), ctx); store_offset -= 8; } if (seen_reg(RV_REG_S4, ctx)) { emit(rv_sd(RV_REG_SP, store_offset, RV_REG_S4), ctx); store_offset -= 8; } if (seen_reg(RV_REG_S5, ctx)) { emit(rv_sd(RV_REG_SP, store_offset, RV_REG_S5), ctx); store_offset -= 8; } if (seen_reg(RV_REG_S6, ctx)) { emit(rv_sd(RV_REG_SP, store_offset, RV_REG_S6), ctx); store_offset -= 8; } emit(rv_addi(RV_REG_FP, RV_REG_SP, stack_adjust), ctx); if (bpf_stack_adjust) emit(rv_addi(RV_REG_S5, RV_REG_SP, bpf_stack_adjust), ctx); /* Program contains calls and tail calls, so RV_REG_TCC need * to be saved across calls. */ if (seen_tail_call(ctx) && seen_call(ctx)) emit(rv_addi(RV_REG_TCC_SAVED, RV_REG_TCC, 0), ctx); ctx->stack_size = stack_adjust; } static void build_epilogue(struct rv_jit_context *ctx) { __build_epilogue(false, ctx); } static int build_body(struct rv_jit_context *ctx, bool extra_pass, int *offset) { const struct bpf_prog *prog = ctx->prog; int i; for (i = 0; i < prog->len; i++) { const struct bpf_insn *insn = &prog->insnsi[i]; int ret; ret = emit_insn(insn, ctx, extra_pass); if (ret > 0) { i++; if (offset) offset[i] = ctx->ninsns; continue; } if (offset) offset[i] = ctx->ninsns; if (ret) return ret; } return 0; } static void bpf_fill_ill_insns(void *area, unsigned int size) { memset(area, 0, size); } static void bpf_flush_icache(void *start, void *end) { flush_icache_range((unsigned long)start, (unsigned long)end); } bool bpf_jit_needs_zext(void) { return true; } struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog) { bool tmp_blinded = false, extra_pass = false; struct bpf_prog *tmp, *orig_prog = prog; int pass = 0, prev_ninsns = 0, i; struct rv_jit_data *jit_data; unsigned int image_size = 0; struct rv_jit_context *ctx; if (!prog->jit_requested) return orig_prog; tmp = bpf_jit_blind_constants(prog); if (IS_ERR(tmp)) return orig_prog; if (tmp != prog) { tmp_blinded = true; prog = tmp; } jit_data = prog->aux->jit_data; if (!jit_data) { jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL); if (!jit_data) { prog = orig_prog; goto out; } prog->aux->jit_data = jit_data; } ctx = &jit_data->ctx; if (ctx->offset) { extra_pass = true; image_size = sizeof(u32) * ctx->ninsns; goto skip_init_ctx; } ctx->prog = prog; ctx->offset = kcalloc(prog->len, sizeof(int), GFP_KERNEL); if (!ctx->offset) { prog = orig_prog; goto out_offset; } for (i = 0; i < prog->len; i++) { prev_ninsns += 32; ctx->offset[i] = prev_ninsns; } for (i = 0; i < 16; i++) { pass++; ctx->ninsns = 0; if (build_body(ctx, extra_pass, ctx->offset)) { prog = orig_prog; goto out_offset; } build_prologue(ctx); ctx->epilogue_offset = ctx->ninsns; build_epilogue(ctx); if (ctx->ninsns == prev_ninsns) { if (jit_data->header) break; image_size = sizeof(u32) * ctx->ninsns; jit_data->header = bpf_jit_binary_alloc(image_size, &jit_data->image, sizeof(u32), bpf_fill_ill_insns); if (!jit_data->header) { prog = orig_prog; goto out_offset; } ctx->insns = (u32 *)jit_data->image; /* Now, when the image is allocated, the image * can potentially shrink more (auipc/jalr -> * jal). */ } prev_ninsns = ctx->ninsns; } if (i == 16) { pr_err("bpf-jit: image did not converge in <%d passes!\n", i); bpf_jit_binary_free(jit_data->header); prog = orig_prog; goto out_offset; } skip_init_ctx: pass++; ctx->ninsns = 0; build_prologue(ctx); if (build_body(ctx, extra_pass, NULL)) { bpf_jit_binary_free(jit_data->header); prog = orig_prog; goto out_offset; } build_epilogue(ctx); if (bpf_jit_enable > 1) bpf_jit_dump(prog->len, image_size, pass, ctx->insns); prog->bpf_func = (void *)ctx->insns; prog->jited = 1; prog->jited_len = image_size; bpf_flush_icache(jit_data->header, ctx->insns + ctx->ninsns); if (!prog->is_func || extra_pass) { out_offset: kfree(ctx->offset); kfree(jit_data); prog->aux->jit_data = NULL; } out: if (tmp_blinded) bpf_jit_prog_release_other(prog, prog == orig_prog ? tmp : orig_prog); return prog; } void *bpf_jit_alloc_exec(unsigned long size) { return __vmalloc_node_range(size, PAGE_SIZE, BPF_JIT_REGION_START, BPF_JIT_REGION_END, GFP_KERNEL, PAGE_KERNEL_EXEC, 0, NUMA_NO_NODE, __builtin_return_address(0)); } void bpf_jit_free_exec(void *addr) { return vfree(addr); }