// SPDX-License-Identifier: GPL-2.0 #include #include #include #include #include #include #include #include #include "compressed/decompressor.h" #include "boot.h" extern char __boot_data_start[], __boot_data_end[]; extern char __boot_data_preserved_start[], __boot_data_preserved_end[]; unsigned long __bootdata_preserved(__kaslr_offset); /* * Some code and data needs to stay below 2 GB, even when the kernel would be * relocated above 2 GB, because it has to use 31 bit addresses. * Such code and data is part of the .dma section, and its location is passed * over to the decompressed / relocated kernel via the .boot.preserved.data * section. */ extern char _sdma[], _edma[]; extern char _stext_dma[], _etext_dma[]; extern struct exception_table_entry _start_dma_ex_table[]; extern struct exception_table_entry _stop_dma_ex_table[]; unsigned long __bootdata_preserved(__sdma) = __pa(&_sdma); unsigned long __bootdata_preserved(__edma) = __pa(&_edma); unsigned long __bootdata_preserved(__stext_dma) = __pa(&_stext_dma); unsigned long __bootdata_preserved(__etext_dma) = __pa(&_etext_dma); struct exception_table_entry * __bootdata_preserved(__start_dma_ex_table) = _start_dma_ex_table; struct exception_table_entry * __bootdata_preserved(__stop_dma_ex_table) = _stop_dma_ex_table; int _diag210_dma(struct diag210 *addr); int _diag26c_dma(void *req, void *resp, enum diag26c_sc subcode); int _diag14_dma(unsigned long rx, unsigned long ry1, unsigned long subcode); void _diag0c_dma(struct hypfs_diag0c_entry *entry); void _diag308_reset_dma(void); struct diag_ops __bootdata_preserved(diag_dma_ops) = { .diag210 = _diag210_dma, .diag26c = _diag26c_dma, .diag14 = _diag14_dma, .diag0c = _diag0c_dma, .diag308_reset = _diag308_reset_dma }; static struct diag210 _diag210_tmp_dma __section(".dma.data"); struct diag210 *__bootdata_preserved(__diag210_tmp_dma) = &_diag210_tmp_dma; void _swsusp_reset_dma(void); unsigned long __bootdata_preserved(__swsusp_reset_dma) = __pa(_swsusp_reset_dma); void error(char *x) { sclp_early_printk("\n\n"); sclp_early_printk(x); sclp_early_printk("\n\n -- System halted"); disabled_wait(); } #ifdef CONFIG_KERNEL_UNCOMPRESSED unsigned long mem_safe_offset(void) { return vmlinux.default_lma + vmlinux.image_size + vmlinux.bss_size; } #endif static void rescue_initrd(unsigned long addr) { if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD)) return; if (!INITRD_START || !INITRD_SIZE) return; if (addr <= INITRD_START) return; memmove((void *)addr, (void *)INITRD_START, INITRD_SIZE); INITRD_START = addr; } static void copy_bootdata(void) { if (__boot_data_end - __boot_data_start != vmlinux.bootdata_size) error(".boot.data section size mismatch"); memcpy((void *)vmlinux.bootdata_off, __boot_data_start, vmlinux.bootdata_size); if (__boot_data_preserved_end - __boot_data_preserved_start != vmlinux.bootdata_preserved_size) error(".boot.preserved.data section size mismatch"); memcpy((void *)vmlinux.bootdata_preserved_off, __boot_data_preserved_start, vmlinux.bootdata_preserved_size); } static void handle_relocs(unsigned long offset) { Elf64_Rela *rela_start, *rela_end, *rela; int r_type, r_sym, rc; Elf64_Addr loc, val; Elf64_Sym *dynsym; rela_start = (Elf64_Rela *) vmlinux.rela_dyn_start; rela_end = (Elf64_Rela *) vmlinux.rela_dyn_end; dynsym = (Elf64_Sym *) vmlinux.dynsym_start; for (rela = rela_start; rela < rela_end; rela++) { loc = rela->r_offset + offset; val = rela->r_addend + offset; r_sym = ELF64_R_SYM(rela->r_info); if (r_sym) val += dynsym[r_sym].st_value; r_type = ELF64_R_TYPE(rela->r_info); rc = arch_kexec_do_relocs(r_type, (void *) loc, val, 0); if (rc) error("Unknown relocation type"); } } static void clear_bss_section(void) { memset((void *)vmlinux.default_lma + vmlinux.image_size, 0, vmlinux.bss_size); } void startup_kernel(void) { unsigned long random_lma; unsigned long safe_addr; void *img; store_ipl_parmblock(); safe_addr = mem_safe_offset(); safe_addr = read_ipl_report(safe_addr); uv_query_info(); rescue_initrd(safe_addr); sclp_early_read_info(); setup_boot_command_line(); parse_boot_command_line(); setup_memory_end(); detect_memory(); random_lma = __kaslr_offset = 0; if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && kaslr_enabled) { random_lma = get_random_base(safe_addr); if (random_lma) { __kaslr_offset = random_lma - vmlinux.default_lma; img = (void *)vmlinux.default_lma; vmlinux.default_lma += __kaslr_offset; vmlinux.entry += __kaslr_offset; vmlinux.bootdata_off += __kaslr_offset; vmlinux.bootdata_preserved_off += __kaslr_offset; vmlinux.rela_dyn_start += __kaslr_offset; vmlinux.rela_dyn_end += __kaslr_offset; vmlinux.dynsym_start += __kaslr_offset; } } if (!IS_ENABLED(CONFIG_KERNEL_UNCOMPRESSED)) { img = decompress_kernel(); memmove((void *)vmlinux.default_lma, img, vmlinux.image_size); } else if (__kaslr_offset) memcpy((void *)vmlinux.default_lma, img, vmlinux.image_size); clear_bss_section(); copy_bootdata(); if (IS_ENABLED(CONFIG_RELOCATABLE)) handle_relocs(__kaslr_offset); if (__kaslr_offset) { /* Clear non-relocated kernel */ if (IS_ENABLED(CONFIG_KERNEL_UNCOMPRESSED)) memset(img, 0, vmlinux.image_size); } vmlinux.entry(); }