// SPDX-License-Identifier: GPL-2.0 /* * Common Ultravisor functions and initialization * * Copyright IBM Corp. 2019, 2020 */ #define KMSG_COMPONENT "prot_virt" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include #include #include #include #include #include #include #include #include #include /* the bootdata_preserved fields come from ones in arch/s390/boot/uv.c */ #ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST int __bootdata_preserved(prot_virt_guest); #endif struct uv_info __bootdata_preserved(uv_info); #if IS_ENABLED(CONFIG_KVM) int prot_virt_host; EXPORT_SYMBOL(prot_virt_host); EXPORT_SYMBOL(uv_info); static int __init prot_virt_setup(char *val) { bool enabled; int rc; rc = kstrtobool(val, &enabled); if (!rc && enabled) prot_virt_host = 1; if (is_prot_virt_guest() && prot_virt_host) { prot_virt_host = 0; pr_warn("Protected virtualization not available in protected guests."); } if (prot_virt_host && !test_facility(158)) { prot_virt_host = 0; pr_warn("Protected virtualization not supported by the hardware."); } return rc; } early_param("prot_virt", prot_virt_setup); static int __init uv_init(unsigned long stor_base, unsigned long stor_len) { struct uv_cb_init uvcb = { .header.cmd = UVC_CMD_INIT_UV, .header.len = sizeof(uvcb), .stor_origin = stor_base, .stor_len = stor_len, }; if (uv_call(0, (uint64_t)&uvcb)) { pr_err("Ultravisor init failed with rc: 0x%x rrc: 0%x\n", uvcb.header.rc, uvcb.header.rrc); return -1; } return 0; } void __init setup_uv(void) { unsigned long uv_stor_base; uv_stor_base = (unsigned long)memblock_alloc_try_nid( uv_info.uv_base_stor_len, SZ_1M, SZ_2G, MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE); if (!uv_stor_base) { pr_warn("Failed to reserve %lu bytes for ultravisor base storage\n", uv_info.uv_base_stor_len); goto fail; } if (uv_init(uv_stor_base, uv_info.uv_base_stor_len)) { memblock_free(uv_stor_base, uv_info.uv_base_stor_len); goto fail; } pr_info("Reserving %luMB as ultravisor base storage\n", uv_info.uv_base_stor_len >> 20); return; fail: pr_info("Disabling support for protected virtualization"); prot_virt_host = 0; } void adjust_to_uv_max(unsigned long *vmax) { *vmax = min_t(unsigned long, *vmax, uv_info.max_sec_stor_addr); } /* * Requests the Ultravisor to pin the page in the shared state. This will * cause an intercept when the guest attempts to unshare the pinned page. */ static int uv_pin_shared(unsigned long paddr) { struct uv_cb_cfs uvcb = { .header.cmd = UVC_CMD_PIN_PAGE_SHARED, .header.len = sizeof(uvcb), .paddr = paddr, }; if (uv_call(0, (u64)&uvcb)) return -EINVAL; return 0; } /* * Requests the Ultravisor to encrypt a guest page and make it * accessible to the host for paging (export). * * @paddr: Absolute host address of page to be exported */ int uv_convert_from_secure(unsigned long paddr) { struct uv_cb_cfs uvcb = { .header.cmd = UVC_CMD_CONV_FROM_SEC_STOR, .header.len = sizeof(uvcb), .paddr = paddr }; if (uv_call(0, (u64)&uvcb)) return -EINVAL; return 0; } /* * Calculate the expected ref_count for a page that would otherwise have no * further pins. This was cribbed from similar functions in other places in * the kernel, but with some slight modifications. We know that a secure * page can not be a huge page for example. */ static int expected_page_refs(struct page *page) { int res; res = page_mapcount(page); if (PageSwapCache(page)) { res++; } else if (page_mapping(page)) { res++; if (page_has_private(page)) res++; } return res; } static int make_secure_pte(pte_t *ptep, unsigned long addr, struct page *exp_page, struct uv_cb_header *uvcb) { pte_t entry = READ_ONCE(*ptep); struct page *page; int expected, rc = 0; if (!pte_present(entry)) return -ENXIO; if (pte_val(entry) & _PAGE_INVALID) return -ENXIO; page = pte_page(entry); if (page != exp_page) return -ENXIO; if (PageWriteback(page)) return -EAGAIN; expected = expected_page_refs(page); if (!page_ref_freeze(page, expected)) return -EBUSY; set_bit(PG_arch_1, &page->flags); rc = uv_call(0, (u64)uvcb); page_ref_unfreeze(page, expected); /* Return -ENXIO if the page was not mapped, -EINVAL otherwise */ if (rc) rc = uvcb->rc == 0x10a ? -ENXIO : -EINVAL; return rc; } /* * Requests the Ultravisor to make a page accessible to a guest. * If it's brought in the first time, it will be cleared. If * it has been exported before, it will be decrypted and integrity * checked. */ int gmap_make_secure(struct gmap *gmap, unsigned long gaddr, void *uvcb) { struct vm_area_struct *vma; bool local_drain = false; spinlock_t *ptelock; unsigned long uaddr; struct page *page; pte_t *ptep; int rc; again: rc = -EFAULT; down_read(&gmap->mm->mmap_sem); uaddr = __gmap_translate(gmap, gaddr); if (IS_ERR_VALUE(uaddr)) goto out; vma = find_vma(gmap->mm, uaddr); if (!vma) goto out; /* * Secure pages cannot be huge and userspace should not combine both. * In case userspace does it anyway this will result in an -EFAULT for * the unpack. The guest is thus never reaching secure mode. If * userspace is playing dirty tricky with mapping huge pages later * on this will result in a segmentation fault. */ if (is_vm_hugetlb_page(vma)) goto out; rc = -ENXIO; page = follow_page(vma, uaddr, FOLL_WRITE); if (IS_ERR_OR_NULL(page)) goto out; lock_page(page); ptep = get_locked_pte(gmap->mm, uaddr, &ptelock); rc = make_secure_pte(ptep, uaddr, page, uvcb); pte_unmap_unlock(ptep, ptelock); unlock_page(page); out: up_read(&gmap->mm->mmap_sem); if (rc == -EAGAIN) { wait_on_page_writeback(page); } else if (rc == -EBUSY) { /* * If we have tried a local drain and the page refcount * still does not match our expected safe value, try with a * system wide drain. This is needed if the pagevecs holding * the page are on a different CPU. */ if (local_drain) { lru_add_drain_all(); /* We give up here, and let the caller try again */ return -EAGAIN; } /* * We are here if the page refcount does not match the * expected safe value. The main culprits are usually * pagevecs. With lru_add_drain() we drain the pagevecs * on the local CPU so that hopefully the refcount will * reach the expected safe value. */ lru_add_drain(); local_drain = true; /* And now we try again immediately after draining */ goto again; } else if (rc == -ENXIO) { if (gmap_fault(gmap, gaddr, FAULT_FLAG_WRITE)) return -EFAULT; return -EAGAIN; } return rc; } EXPORT_SYMBOL_GPL(gmap_make_secure); int gmap_convert_to_secure(struct gmap *gmap, unsigned long gaddr) { struct uv_cb_cts uvcb = { .header.cmd = UVC_CMD_CONV_TO_SEC_STOR, .header.len = sizeof(uvcb), .guest_handle = gmap->guest_handle, .gaddr = gaddr, }; return gmap_make_secure(gmap, gaddr, &uvcb); } EXPORT_SYMBOL_GPL(gmap_convert_to_secure); /* * To be called with the page locked or with an extra reference! This will * prevent gmap_make_secure from touching the page concurrently. Having 2 * parallel make_page_accessible is fine, as the UV calls will become a * no-op if the page is already exported. */ int arch_make_page_accessible(struct page *page) { int rc = 0; /* Hugepage cannot be protected, so nothing to do */ if (PageHuge(page)) return 0; /* * PG_arch_1 is used in 3 places: * 1. for kernel page tables during early boot * 2. for storage keys of huge pages and KVM * 3. As an indication that this page might be secure. This can * overindicate, e.g. we set the bit before calling * convert_to_secure. * As secure pages are never huge, all 3 variants can co-exists. */ if (!test_bit(PG_arch_1, &page->flags)) return 0; rc = uv_pin_shared(page_to_phys(page)); if (!rc) { clear_bit(PG_arch_1, &page->flags); return 0; } rc = uv_convert_from_secure(page_to_phys(page)); if (!rc) { clear_bit(PG_arch_1, &page->flags); return 0; } return rc; } EXPORT_SYMBOL_GPL(arch_make_page_accessible); #endif #if defined(CONFIG_PROTECTED_VIRTUALIZATION_GUEST) || IS_ENABLED(CONFIG_KVM) static ssize_t uv_query_facilities(struct kobject *kobj, struct kobj_attribute *attr, char *page) { return snprintf(page, PAGE_SIZE, "%lx\n%lx\n%lx\n%lx\n", uv_info.inst_calls_list[0], uv_info.inst_calls_list[1], uv_info.inst_calls_list[2], uv_info.inst_calls_list[3]); } static struct kobj_attribute uv_query_facilities_attr = __ATTR(facilities, 0444, uv_query_facilities, NULL); static ssize_t uv_query_max_guest_cpus(struct kobject *kobj, struct kobj_attribute *attr, char *page) { return snprintf(page, PAGE_SIZE, "%d\n", uv_info.max_guest_cpus); } static struct kobj_attribute uv_query_max_guest_cpus_attr = __ATTR(max_cpus, 0444, uv_query_max_guest_cpus, NULL); static ssize_t uv_query_max_guest_vms(struct kobject *kobj, struct kobj_attribute *attr, char *page) { return snprintf(page, PAGE_SIZE, "%d\n", uv_info.max_num_sec_conf); } static struct kobj_attribute uv_query_max_guest_vms_attr = __ATTR(max_guests, 0444, uv_query_max_guest_vms, NULL); static ssize_t uv_query_max_guest_addr(struct kobject *kobj, struct kobj_attribute *attr, char *page) { return snprintf(page, PAGE_SIZE, "%lx\n", uv_info.max_sec_stor_addr); } static struct kobj_attribute uv_query_max_guest_addr_attr = __ATTR(max_address, 0444, uv_query_max_guest_addr, NULL); static struct attribute *uv_query_attrs[] = { &uv_query_facilities_attr.attr, &uv_query_max_guest_cpus_attr.attr, &uv_query_max_guest_vms_attr.attr, &uv_query_max_guest_addr_attr.attr, NULL, }; static struct attribute_group uv_query_attr_group = { .attrs = uv_query_attrs, }; static struct kset *uv_query_kset; static struct kobject *uv_kobj; static int __init uv_info_init(void) { int rc = -ENOMEM; if (!test_facility(158)) return 0; uv_kobj = kobject_create_and_add("uv", firmware_kobj); if (!uv_kobj) return -ENOMEM; uv_query_kset = kset_create_and_add("query", NULL, uv_kobj); if (!uv_query_kset) goto out_kobj; rc = sysfs_create_group(&uv_query_kset->kobj, &uv_query_attr_group); if (!rc) return 0; kset_unregister(uv_query_kset); out_kobj: kobject_del(uv_kobj); kobject_put(uv_kobj); return rc; } device_initcall(uv_info_init); #endif