/* * handling interprocessor communication * * Copyright IBM Corp. 2008, 2013 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License (version 2 only) * as published by the Free Software Foundation. * * Author(s): Carsten Otte * Christian Borntraeger * Christian Ehrhardt */ #include #include #include #include #include "gaccess.h" #include "kvm-s390.h" #include "trace.h" static int __sigp_sense(struct kvm_vcpu *vcpu, u16 cpu_addr, u64 *reg) { struct kvm_s390_local_interrupt *li; struct kvm_vcpu *dst_vcpu = NULL; int cpuflags; int rc; if (cpu_addr >= KVM_MAX_VCPUS) return SIGP_CC_NOT_OPERATIONAL; dst_vcpu = kvm_get_vcpu(vcpu->kvm, cpu_addr); if (!dst_vcpu) return SIGP_CC_NOT_OPERATIONAL; li = &dst_vcpu->arch.local_int; cpuflags = atomic_read(li->cpuflags); if (!(cpuflags & (CPUSTAT_ECALL_PEND | CPUSTAT_STOPPED))) rc = SIGP_CC_ORDER_CODE_ACCEPTED; else { *reg &= 0xffffffff00000000UL; if (cpuflags & CPUSTAT_ECALL_PEND) *reg |= SIGP_STATUS_EXT_CALL_PENDING; if (cpuflags & CPUSTAT_STOPPED) *reg |= SIGP_STATUS_STOPPED; rc = SIGP_CC_STATUS_STORED; } VCPU_EVENT(vcpu, 4, "sensed status of cpu %x rc %x", cpu_addr, rc); return rc; } static int __sigp_emergency(struct kvm_vcpu *vcpu, u16 cpu_addr) { struct kvm_s390_interrupt s390int = { .type = KVM_S390_INT_EMERGENCY, .parm = vcpu->vcpu_id, }; struct kvm_vcpu *dst_vcpu = NULL; int rc = 0; if (cpu_addr < KVM_MAX_VCPUS) dst_vcpu = kvm_get_vcpu(vcpu->kvm, cpu_addr); if (!dst_vcpu) return SIGP_CC_NOT_OPERATIONAL; rc = kvm_s390_inject_vcpu(dst_vcpu, &s390int); if (!rc) VCPU_EVENT(vcpu, 4, "sent sigp emerg to cpu %x", cpu_addr); return rc ? rc : SIGP_CC_ORDER_CODE_ACCEPTED; } static int __sigp_conditional_emergency(struct kvm_vcpu *vcpu, u16 cpu_addr, u16 asn, u64 *reg) { struct kvm_vcpu *dst_vcpu = NULL; const u64 psw_int_mask = PSW_MASK_IO | PSW_MASK_EXT; u16 p_asn, s_asn; psw_t *psw; u32 flags; if (cpu_addr < KVM_MAX_VCPUS) dst_vcpu = kvm_get_vcpu(vcpu->kvm, cpu_addr); if (!dst_vcpu) return SIGP_CC_NOT_OPERATIONAL; flags = atomic_read(&dst_vcpu->arch.sie_block->cpuflags); psw = &dst_vcpu->arch.sie_block->gpsw; p_asn = dst_vcpu->arch.sie_block->gcr[4] & 0xffff; /* Primary ASN */ s_asn = dst_vcpu->arch.sie_block->gcr[3] & 0xffff; /* Secondary ASN */ /* Deliver the emergency signal? */ if (!(flags & CPUSTAT_STOPPED) || (psw->mask & psw_int_mask) != psw_int_mask || ((flags & CPUSTAT_WAIT) && psw->addr != 0) || (!(flags & CPUSTAT_WAIT) && (asn == p_asn || asn == s_asn))) { return __sigp_emergency(vcpu, cpu_addr); } else { *reg &= 0xffffffff00000000UL; *reg |= SIGP_STATUS_INCORRECT_STATE; return SIGP_CC_STATUS_STORED; } } static int __sigp_external_call(struct kvm_vcpu *vcpu, u16 cpu_addr) { struct kvm_s390_interrupt s390int = { .type = KVM_S390_INT_EXTERNAL_CALL, .parm = vcpu->vcpu_id, }; struct kvm_vcpu *dst_vcpu = NULL; int rc; if (cpu_addr < KVM_MAX_VCPUS) dst_vcpu = kvm_get_vcpu(vcpu->kvm, cpu_addr); if (!dst_vcpu) return SIGP_CC_NOT_OPERATIONAL; rc = kvm_s390_inject_vcpu(dst_vcpu, &s390int); if (!rc) VCPU_EVENT(vcpu, 4, "sent sigp ext call to cpu %x", cpu_addr); return rc ? rc : SIGP_CC_ORDER_CODE_ACCEPTED; } static int __inject_sigp_stop(struct kvm_s390_local_interrupt *li, int action) { struct kvm_s390_interrupt_info *inti; int rc = SIGP_CC_ORDER_CODE_ACCEPTED; inti = kzalloc(sizeof(*inti), GFP_ATOMIC); if (!inti) return -ENOMEM; inti->type = KVM_S390_SIGP_STOP; spin_lock_bh(&li->lock); if ((atomic_read(li->cpuflags) & CPUSTAT_STOPPED)) { kfree(inti); if ((action & ACTION_STORE_ON_STOP) != 0) rc = -ESHUTDOWN; goto out; } list_add_tail(&inti->list, &li->list); atomic_set(&li->active, 1); atomic_set_mask(CPUSTAT_STOP_INT, li->cpuflags); li->action_bits |= action; if (waitqueue_active(li->wq)) wake_up_interruptible(li->wq); out: spin_unlock_bh(&li->lock); return rc; } static int __sigp_stop(struct kvm_vcpu *vcpu, u16 cpu_addr, int action) { struct kvm_s390_local_interrupt *li; struct kvm_vcpu *dst_vcpu = NULL; int rc; if (cpu_addr >= KVM_MAX_VCPUS) return SIGP_CC_NOT_OPERATIONAL; dst_vcpu = kvm_get_vcpu(vcpu->kvm, cpu_addr); if (!dst_vcpu) return SIGP_CC_NOT_OPERATIONAL; li = &dst_vcpu->arch.local_int; rc = __inject_sigp_stop(li, action); VCPU_EVENT(vcpu, 4, "sent sigp stop to cpu %x", cpu_addr); if ((action & ACTION_STORE_ON_STOP) != 0 && rc == -ESHUTDOWN) { /* If the CPU has already been stopped, we still have * to save the status when doing stop-and-store. This * has to be done after unlocking all spinlocks. */ rc = kvm_s390_store_status_unloaded(dst_vcpu, KVM_S390_STORE_STATUS_NOADDR); } return rc; } static int __sigp_set_arch(struct kvm_vcpu *vcpu, u32 parameter) { int rc; unsigned int i; struct kvm_vcpu *v; switch (parameter & 0xff) { case 0: rc = SIGP_CC_NOT_OPERATIONAL; break; case 1: case 2: kvm_for_each_vcpu(i, v, vcpu->kvm) { v->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; kvm_clear_async_pf_completion_queue(v); } rc = SIGP_CC_ORDER_CODE_ACCEPTED; break; default: rc = -EOPNOTSUPP; } return rc; } static int __sigp_set_prefix(struct kvm_vcpu *vcpu, u16 cpu_addr, u32 address, u64 *reg) { struct kvm_s390_local_interrupt *li; struct kvm_vcpu *dst_vcpu = NULL; struct kvm_s390_interrupt_info *inti; int rc; if (cpu_addr < KVM_MAX_VCPUS) dst_vcpu = kvm_get_vcpu(vcpu->kvm, cpu_addr); if (!dst_vcpu) return SIGP_CC_NOT_OPERATIONAL; li = &dst_vcpu->arch.local_int; /* * Make sure the new value is valid memory. We only need to check the * first page, since address is 8k aligned and memory pieces are always * at least 1MB aligned and have at least a size of 1MB. */ address &= 0x7fffe000u; if (kvm_is_error_gpa(vcpu->kvm, address)) { *reg &= 0xffffffff00000000UL; *reg |= SIGP_STATUS_INVALID_PARAMETER; return SIGP_CC_STATUS_STORED; } inti = kzalloc(sizeof(*inti), GFP_KERNEL); if (!inti) return SIGP_CC_BUSY; spin_lock_bh(&li->lock); /* cpu must be in stopped state */ if (!(atomic_read(li->cpuflags) & CPUSTAT_STOPPED)) { *reg &= 0xffffffff00000000UL; *reg |= SIGP_STATUS_INCORRECT_STATE; rc = SIGP_CC_STATUS_STORED; kfree(inti); goto out_li; } inti->type = KVM_S390_SIGP_SET_PREFIX; inti->prefix.address = address; list_add_tail(&inti->list, &li->list); atomic_set(&li->active, 1); if (waitqueue_active(li->wq)) wake_up_interruptible(li->wq); rc = SIGP_CC_ORDER_CODE_ACCEPTED; VCPU_EVENT(vcpu, 4, "set prefix of cpu %02x to %x", cpu_addr, address); out_li: spin_unlock_bh(&li->lock); return rc; } static int __sigp_store_status_at_addr(struct kvm_vcpu *vcpu, u16 cpu_id, u32 addr, u64 *reg) { struct kvm_vcpu *dst_vcpu = NULL; int flags; int rc; if (cpu_id < KVM_MAX_VCPUS) dst_vcpu = kvm_get_vcpu(vcpu->kvm, cpu_id); if (!dst_vcpu) return SIGP_CC_NOT_OPERATIONAL; spin_lock_bh(&dst_vcpu->arch.local_int.lock); flags = atomic_read(dst_vcpu->arch.local_int.cpuflags); spin_unlock_bh(&dst_vcpu->arch.local_int.lock); if (!(flags & CPUSTAT_STOPPED)) { *reg &= 0xffffffff00000000UL; *reg |= SIGP_STATUS_INCORRECT_STATE; return SIGP_CC_STATUS_STORED; } addr &= 0x7ffffe00; rc = kvm_s390_store_status_unloaded(dst_vcpu, addr); if (rc == -EFAULT) { *reg &= 0xffffffff00000000UL; *reg |= SIGP_STATUS_INVALID_PARAMETER; rc = SIGP_CC_STATUS_STORED; } return rc; } static int __sigp_sense_running(struct kvm_vcpu *vcpu, u16 cpu_addr, u64 *reg) { struct kvm_s390_local_interrupt *li; struct kvm_vcpu *dst_vcpu = NULL; int rc; if (cpu_addr >= KVM_MAX_VCPUS) return SIGP_CC_NOT_OPERATIONAL; dst_vcpu = kvm_get_vcpu(vcpu->kvm, cpu_addr); if (!dst_vcpu) return SIGP_CC_NOT_OPERATIONAL; li = &dst_vcpu->arch.local_int; if (atomic_read(li->cpuflags) & CPUSTAT_RUNNING) { /* running */ rc = SIGP_CC_ORDER_CODE_ACCEPTED; } else { /* not running */ *reg &= 0xffffffff00000000UL; *reg |= SIGP_STATUS_NOT_RUNNING; rc = SIGP_CC_STATUS_STORED; } VCPU_EVENT(vcpu, 4, "sensed running status of cpu %x rc %x", cpu_addr, rc); return rc; } /* Test whether the destination CPU is available and not busy */ static int sigp_check_callable(struct kvm_vcpu *vcpu, u16 cpu_addr) { struct kvm_s390_local_interrupt *li; int rc = SIGP_CC_ORDER_CODE_ACCEPTED; struct kvm_vcpu *dst_vcpu = NULL; if (cpu_addr >= KVM_MAX_VCPUS) return SIGP_CC_NOT_OPERATIONAL; dst_vcpu = kvm_get_vcpu(vcpu->kvm, cpu_addr); if (!dst_vcpu) return SIGP_CC_NOT_OPERATIONAL; li = &dst_vcpu->arch.local_int; spin_lock_bh(&li->lock); if (li->action_bits & ACTION_STOP_ON_STOP) rc = SIGP_CC_BUSY; spin_unlock_bh(&li->lock); return rc; } int kvm_s390_handle_sigp(struct kvm_vcpu *vcpu) { int r1 = (vcpu->arch.sie_block->ipa & 0x00f0) >> 4; int r3 = vcpu->arch.sie_block->ipa & 0x000f; u32 parameter; u16 cpu_addr = vcpu->run->s.regs.gprs[r3]; u8 order_code; int rc; /* sigp in userspace can exit */ if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); order_code = kvm_s390_get_base_disp_rs(vcpu); if (r1 % 2) parameter = vcpu->run->s.regs.gprs[r1]; else parameter = vcpu->run->s.regs.gprs[r1 + 1]; trace_kvm_s390_handle_sigp(vcpu, order_code, cpu_addr, parameter); switch (order_code) { case SIGP_SENSE: vcpu->stat.instruction_sigp_sense++; rc = __sigp_sense(vcpu, cpu_addr, &vcpu->run->s.regs.gprs[r1]); break; case SIGP_EXTERNAL_CALL: vcpu->stat.instruction_sigp_external_call++; rc = __sigp_external_call(vcpu, cpu_addr); break; case SIGP_EMERGENCY_SIGNAL: vcpu->stat.instruction_sigp_emergency++; rc = __sigp_emergency(vcpu, cpu_addr); break; case SIGP_STOP: vcpu->stat.instruction_sigp_stop++; rc = __sigp_stop(vcpu, cpu_addr, ACTION_STOP_ON_STOP); break; case SIGP_STOP_AND_STORE_STATUS: vcpu->stat.instruction_sigp_stop++; rc = __sigp_stop(vcpu, cpu_addr, ACTION_STORE_ON_STOP | ACTION_STOP_ON_STOP); break; case SIGP_STORE_STATUS_AT_ADDRESS: rc = __sigp_store_status_at_addr(vcpu, cpu_addr, parameter, &vcpu->run->s.regs.gprs[r1]); break; case SIGP_SET_ARCHITECTURE: vcpu->stat.instruction_sigp_arch++; rc = __sigp_set_arch(vcpu, parameter); break; case SIGP_SET_PREFIX: vcpu->stat.instruction_sigp_prefix++; rc = __sigp_set_prefix(vcpu, cpu_addr, parameter, &vcpu->run->s.regs.gprs[r1]); break; case SIGP_COND_EMERGENCY_SIGNAL: rc = __sigp_conditional_emergency(vcpu, cpu_addr, parameter, &vcpu->run->s.regs.gprs[r1]); break; case SIGP_SENSE_RUNNING: vcpu->stat.instruction_sigp_sense_running++; rc = __sigp_sense_running(vcpu, cpu_addr, &vcpu->run->s.regs.gprs[r1]); break; case SIGP_START: rc = sigp_check_callable(vcpu, cpu_addr); if (rc == SIGP_CC_ORDER_CODE_ACCEPTED) rc = -EOPNOTSUPP; /* Handle START in user space */ break; case SIGP_RESTART: vcpu->stat.instruction_sigp_restart++; rc = sigp_check_callable(vcpu, cpu_addr); if (rc == SIGP_CC_ORDER_CODE_ACCEPTED) { VCPU_EVENT(vcpu, 4, "sigp restart %x to handle userspace", cpu_addr); /* user space must know about restart */ rc = -EOPNOTSUPP; } break; default: return -EOPNOTSUPP; } if (rc < 0) return rc; kvm_s390_set_psw_cc(vcpu, rc); return 0; } /* * Handle SIGP partial execution interception. * * This interception will occur at the source cpu when a source cpu sends an * external call to a target cpu and the target cpu has the WAIT bit set in * its cpuflags. Interception will occurr after the interrupt indicator bits at * the target cpu have been set. All error cases will lead to instruction * interception, therefore nothing is to be checked or prepared. */ int kvm_s390_handle_sigp_pei(struct kvm_vcpu *vcpu) { int r3 = vcpu->arch.sie_block->ipa & 0x000f; u16 cpu_addr = vcpu->run->s.regs.gprs[r3]; struct kvm_vcpu *dest_vcpu; u8 order_code = kvm_s390_get_base_disp_rs(vcpu); trace_kvm_s390_handle_sigp_pei(vcpu, order_code, cpu_addr); if (order_code == SIGP_EXTERNAL_CALL) { dest_vcpu = kvm_get_vcpu(vcpu->kvm, cpu_addr); BUG_ON(dest_vcpu == NULL); spin_lock_bh(&dest_vcpu->arch.local_int.lock); if (waitqueue_active(&dest_vcpu->wq)) wake_up_interruptible(&dest_vcpu->wq); dest_vcpu->preempted = true; spin_unlock_bh(&dest_vcpu->arch.local_int.lock); kvm_s390_set_psw_cc(vcpu, SIGP_CC_ORDER_CODE_ACCEPTED); return 0; } return -EOPNOTSUPP; }