// SPDX-License-Identifier: GPL-2.0 /* * Access kernel memory without faulting -- s390 specific implementation. * * Copyright IBM Corp. 2009, 2015 * */ #include #include #include #include #include #include #include #include #include static notrace long s390_kernel_write_odd(void *dst, const void *src, size_t size) { unsigned long aligned, offset, count; char tmp[8]; aligned = (unsigned long) dst & ~7UL; offset = (unsigned long) dst & 7UL; size = min(8UL - offset, size); count = size - 1; asm volatile( " bras 1,0f\n" " mvc 0(1,%4),0(%5)\n" "0: mvc 0(8,%3),0(%0)\n" " ex %1,0(1)\n" " lg %1,0(%3)\n" " lra %0,0(%0)\n" " sturg %1,%0\n" : "+&a" (aligned), "+&a" (count), "=m" (tmp) : "a" (&tmp), "a" (&tmp[offset]), "a" (src) : "cc", "memory", "1"); return size; } /* * s390_kernel_write - write to kernel memory bypassing DAT * @dst: destination address * @src: source address * @size: number of bytes to copy * * This function writes to kernel memory bypassing DAT and possible page table * write protection. It writes to the destination using the sturg instruction. * Therefore we have a read-modify-write sequence: the function reads eight * bytes from destination at an eight byte boundary, modifies the bytes * requested and writes the result back in a loop. */ static DEFINE_SPINLOCK(s390_kernel_write_lock); notrace void *s390_kernel_write(void *dst, const void *src, size_t size) { void *tmp = dst; unsigned long flags; long copied; spin_lock_irqsave(&s390_kernel_write_lock, flags); if (!(flags & PSW_MASK_DAT)) { memcpy(dst, src, size); } else { while (size) { copied = s390_kernel_write_odd(tmp, src, size); tmp += copied; src += copied; size -= copied; } } spin_unlock_irqrestore(&s390_kernel_write_lock, flags); return dst; } static int __no_sanitize_address __memcpy_real(void *dest, void *src, size_t count) { union register_pair _dst, _src; int rc = -EFAULT; _dst.even = (unsigned long) dest; _dst.odd = (unsigned long) count; _src.even = (unsigned long) src; _src.odd = (unsigned long) count; asm volatile ( "0: mvcle %[dst],%[src],0\n" "1: jo 0b\n" " lhi %[rc],0\n" "2:\n" EX_TABLE(1b,2b) : [rc] "+&d" (rc), [dst] "+&d" (_dst.pair), [src] "+&d" (_src.pair) : : "cc", "memory"); return rc; } static unsigned long __no_sanitize_address _memcpy_real(unsigned long dest, unsigned long src, unsigned long count) { int irqs_disabled, rc; unsigned long flags; if (!count) return 0; flags = arch_local_irq_save(); irqs_disabled = arch_irqs_disabled_flags(flags); if (!irqs_disabled) trace_hardirqs_off(); __arch_local_irq_stnsm(0xf8); // disable DAT rc = __memcpy_real((void *) dest, (void *) src, (size_t) count); if (flags & PSW_MASK_DAT) __arch_local_irq_stosm(0x04); // enable DAT if (!irqs_disabled) trace_hardirqs_on(); __arch_local_irq_ssm(flags); return rc; } /* * Copy memory in real mode (kernel to kernel) */ int memcpy_real(void *dest, unsigned long src, size_t count) { unsigned long _dest = (unsigned long)dest; unsigned long _src = (unsigned long)src; unsigned long _count = (unsigned long)count; int rc; if (S390_lowcore.nodat_stack != 0) { preempt_disable(); rc = call_on_stack(3, S390_lowcore.nodat_stack, unsigned long, _memcpy_real, unsigned long, _dest, unsigned long, _src, unsigned long, _count); preempt_enable(); return rc; } /* * This is a really early memcpy_real call, the stacks are * not set up yet. Just call _memcpy_real on the early boot * stack */ return _memcpy_real(_dest, _src, _count); } /* * Copy memory in absolute mode (kernel to kernel) */ void memcpy_absolute(void *dest, void *src, size_t count) { unsigned long cr0, flags, prefix; flags = arch_local_irq_save(); __ctl_store(cr0, 0, 0); __ctl_clear_bit(0, 28); /* disable lowcore protection */ prefix = store_prefix(); if (prefix) { local_mcck_disable(); set_prefix(0); memcpy(dest, src, count); set_prefix(prefix); local_mcck_enable(); } else { memcpy(dest, src, count); } __ctl_load(cr0, 0, 0); arch_local_irq_restore(flags); } /* * Copy memory from kernel (real) to user (virtual) */ int copy_to_user_real(void __user *dest, unsigned long src, unsigned long count) { int offs = 0, size, rc; char *buf; buf = (char *) __get_free_page(GFP_KERNEL); if (!buf) return -ENOMEM; rc = -EFAULT; while (offs < count) { size = min(PAGE_SIZE, count - offs); if (memcpy_real(buf, src + offs, size)) goto out; if (copy_to_user(dest + offs, buf, size)) goto out; offs += size; } rc = 0; out: free_page((unsigned long) buf); return rc; } /* * Check if physical address is within prefix or zero page */ static int is_swapped(phys_addr_t addr) { phys_addr_t lc; int cpu; if (addr < sizeof(struct lowcore)) return 1; for_each_online_cpu(cpu) { lc = virt_to_phys(lowcore_ptr[cpu]); if (addr > lc + sizeof(struct lowcore) - 1 || addr < lc) continue; return 1; } return 0; } /* * Convert a physical pointer for /dev/mem access * * For swapped prefix pages a new buffer is returned that contains a copy of * the absolute memory. The buffer size is maximum one page large. */ void *xlate_dev_mem_ptr(phys_addr_t addr) { void *ptr = phys_to_virt(addr); void *bounce = ptr; unsigned long size; cpus_read_lock(); preempt_disable(); if (is_swapped(addr)) { size = PAGE_SIZE - (addr & ~PAGE_MASK); bounce = (void *) __get_free_page(GFP_ATOMIC); if (bounce) memcpy_absolute(bounce, ptr, size); } preempt_enable(); cpus_read_unlock(); return bounce; } /* * Free converted buffer for /dev/mem access (if necessary) */ void unxlate_dev_mem_ptr(phys_addr_t addr, void *ptr) { if (addr != virt_to_phys(ptr)) free_page((unsigned long)ptr); }