/* * arch/sh/kernel/cpu/clock.c - SuperH clock framework * * Copyright (C) 2005, 2006, 2007 Paul Mundt * * This clock framework is derived from the OMAP version by: * * Copyright (C) 2004 - 2005 Nokia Corporation * Written by Tuukka Tikkanen * * Modified for omap shared clock framework by Tony Lindgren * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include static LIST_HEAD(clock_list); static DEFINE_SPINLOCK(clock_lock); static DEFINE_MUTEX(clock_list_sem); /* * Each subtype is expected to define the init routines for these clocks, * as each subtype (or processor family) will have these clocks at the * very least. These are all provided through the CPG, which even some of * the more quirky parts (such as ST40, SH4-202, etc.) still have. * * The processor-specific code is expected to register any additional * clock sources that are of interest. */ static struct clk master_clk = { .name = "master_clk", .flags = CLK_ALWAYS_ENABLED | CLK_RATE_PROPAGATES, .rate = CONFIG_SH_PCLK_FREQ, }; static struct clk module_clk = { .name = "module_clk", .parent = &master_clk, .flags = CLK_ALWAYS_ENABLED | CLK_RATE_PROPAGATES, }; static struct clk bus_clk = { .name = "bus_clk", .parent = &master_clk, .flags = CLK_ALWAYS_ENABLED | CLK_RATE_PROPAGATES, }; static struct clk cpu_clk = { .name = "cpu_clk", .parent = &master_clk, .flags = CLK_ALWAYS_ENABLED, }; /* * The ordering of these clocks matters, do not change it. */ static struct clk *onchip_clocks[] = { &master_clk, &module_clk, &bus_clk, &cpu_clk, }; static void propagate_rate(struct clk *clk) { struct clk *clkp; list_for_each_entry(clkp, &clock_list, node) { if (likely(clkp->parent != clk)) continue; if (likely(clkp->ops && clkp->ops->recalc)) clkp->ops->recalc(clkp); if (unlikely(clkp->flags & CLK_RATE_PROPAGATES)) propagate_rate(clkp); } } static int __clk_enable(struct clk *clk) { /* * See if this is the first time we're enabling the clock, some * clocks that are always enabled still require "special" * initialization. This is especially true if the clock mode * changes and the clock needs to hunt for the proper set of * divisors to use before it can effectively recalc. */ if (unlikely(atomic_read(&clk->kref.refcount) == 1)) if (clk->ops && clk->ops->init) clk->ops->init(clk); kref_get(&clk->kref); if (clk->flags & CLK_ALWAYS_ENABLED) return 0; if (likely(clk->ops && clk->ops->enable)) clk->ops->enable(clk); return 0; } int clk_enable(struct clk *clk) { unsigned long flags; int ret; spin_lock_irqsave(&clock_lock, flags); ret = __clk_enable(clk); spin_unlock_irqrestore(&clock_lock, flags); return ret; } EXPORT_SYMBOL_GPL(clk_enable); static void clk_kref_release(struct kref *kref) { /* Nothing to do */ } static void __clk_disable(struct clk *clk) { int count = kref_put(&clk->kref, clk_kref_release); if (clk->flags & CLK_ALWAYS_ENABLED) return; if (!count) { /* count reaches zero, disable the clock */ if (likely(clk->ops && clk->ops->disable)) clk->ops->disable(clk); } } void clk_disable(struct clk *clk) { unsigned long flags; spin_lock_irqsave(&clock_lock, flags); __clk_disable(clk); spin_unlock_irqrestore(&clock_lock, flags); } EXPORT_SYMBOL_GPL(clk_disable); int clk_register(struct clk *clk) { mutex_lock(&clock_list_sem); list_add(&clk->node, &clock_list); kref_init(&clk->kref); mutex_unlock(&clock_list_sem); if (clk->flags & CLK_ALWAYS_ENABLED) { pr_debug( "Clock '%s' is ALWAYS_ENABLED\n", clk->name); if (clk->ops && clk->ops->init) clk->ops->init(clk); if (clk->ops && clk->ops->enable) clk->ops->enable(clk); pr_debug( "Enabled."); } return 0; } EXPORT_SYMBOL_GPL(clk_register); void clk_unregister(struct clk *clk) { mutex_lock(&clock_list_sem); list_del(&clk->node); mutex_unlock(&clock_list_sem); } EXPORT_SYMBOL_GPL(clk_unregister); unsigned long clk_get_rate(struct clk *clk) { return clk->rate; } EXPORT_SYMBOL_GPL(clk_get_rate); int clk_set_rate(struct clk *clk, unsigned long rate) { return clk_set_rate_ex(clk, rate, 0); } EXPORT_SYMBOL_GPL(clk_set_rate); int clk_set_rate_ex(struct clk *clk, unsigned long rate, int algo_id) { int ret = -EOPNOTSUPP; if (likely(clk->ops && clk->ops->set_rate)) { unsigned long flags; spin_lock_irqsave(&clock_lock, flags); ret = clk->ops->set_rate(clk, rate, algo_id); spin_unlock_irqrestore(&clock_lock, flags); } if (unlikely(clk->flags & CLK_RATE_PROPAGATES)) propagate_rate(clk); return ret; } EXPORT_SYMBOL_GPL(clk_set_rate_ex); void clk_recalc_rate(struct clk *clk) { if (likely(clk->ops && clk->ops->recalc)) { unsigned long flags; spin_lock_irqsave(&clock_lock, flags); clk->ops->recalc(clk); spin_unlock_irqrestore(&clock_lock, flags); } if (unlikely(clk->flags & CLK_RATE_PROPAGATES)) propagate_rate(clk); } EXPORT_SYMBOL_GPL(clk_recalc_rate); long clk_round_rate(struct clk *clk, unsigned long rate) { if (likely(clk->ops && clk->ops->round_rate)) { unsigned long flags, rounded; spin_lock_irqsave(&clock_lock, flags); rounded = clk->ops->round_rate(clk, rate); spin_unlock_irqrestore(&clock_lock, flags); return rounded; } return clk_get_rate(clk); } EXPORT_SYMBOL_GPL(clk_round_rate); /* * Returns a clock. Note that we first try to use device id on the bus * and clock name. If this fails, we try to use clock name only. */ struct clk *clk_get(struct device *dev, const char *id) { struct clk *p, *clk = ERR_PTR(-ENOENT); int idno; if (dev == NULL || dev->bus != &platform_bus_type) idno = -1; else idno = to_platform_device(dev)->id; mutex_lock(&clock_list_sem); list_for_each_entry(p, &clock_list, node) { if (p->id == idno && strcmp(id, p->name) == 0 && try_module_get(p->owner)) { clk = p; goto found; } } list_for_each_entry(p, &clock_list, node) { if (strcmp(id, p->name) == 0 && try_module_get(p->owner)) { clk = p; break; } } found: mutex_unlock(&clock_list_sem); return clk; } EXPORT_SYMBOL_GPL(clk_get); void clk_put(struct clk *clk) { if (clk && !IS_ERR(clk)) module_put(clk->owner); } EXPORT_SYMBOL_GPL(clk_put); void __init __attribute__ ((weak)) arch_init_clk_ops(struct clk_ops **ops, int type) { } void __init __attribute__ ((weak)) arch_clk_init(void) { } static int show_clocks(char *buf, char **start, off_t off, int len, int *eof, void *data) { struct clk *clk; char *p = buf; list_for_each_entry_reverse(clk, &clock_list, node) { unsigned long rate = clk_get_rate(clk); p += sprintf(p, "%-12s\t: %ld.%02ldMHz\t%s\n", clk->name, rate / 1000000, (rate % 1000000) / 10000, ((clk->flags & CLK_ALWAYS_ENABLED) || (atomic_read(&clk->kref.refcount) != 1)) ? "enabled" : "disabled"); } return p - buf; } int __init clk_init(void) { int i, ret = 0; BUG_ON(!master_clk.rate); for (i = 0; i < ARRAY_SIZE(onchip_clocks); i++) { struct clk *clk = onchip_clocks[i]; arch_init_clk_ops(&clk->ops, i); ret |= clk_register(clk); } arch_clk_init(); /* Kick the child clocks.. */ propagate_rate(&master_clk); propagate_rate(&bus_clk); return ret; } static int __init clk_proc_init(void) { struct proc_dir_entry *p; p = create_proc_read_entry("clocks", S_IRUSR, NULL, show_clocks, NULL); if (unlikely(!p)) return -EINVAL; return 0; } subsys_initcall(clk_proc_init);