/* * arch/sh/kernel/cpu/init.c * * CPU init code * * Copyright (C) 2002, 2003 Paul Mundt * Copyright (C) 2003 Richard Curnow * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include #include #include #include #include #include #include #include #include extern void detect_cpu_and_cache_system(void); /* * Generic wrapper for command line arguments to disable on-chip * peripherals (nofpu, nodsp, and so forth). */ #define onchip_setup(x) \ static int x##_disabled __initdata = 0; \ \ static int __init x##_setup(char *opts) \ { \ x##_disabled = 1; \ return 1; \ } \ __setup("no" __stringify(x), x##_setup); onchip_setup(fpu); onchip_setup(dsp); /* * Generic first-level cache init */ static void __init cache_init(void) { unsigned long ccr, flags; if (cpu_data->type == CPU_SH_NONE) panic("Unknown CPU"); jump_to_P2(); ccr = ctrl_inl(CCR); /* * At this point we don't know whether the cache is enabled or not - a * bootloader may have enabled it. There are at least 2 things that * could be dirty in the cache at this point: * 1. kernel command line set up by boot loader * 2. spilled registers from the prolog of this function * => before re-initialising the cache, we must do a purge of the whole * cache out to memory for safety. As long as nothing is spilled * during the loop to lines that have already been done, this is safe. * - RPC */ if (ccr & CCR_CACHE_ENABLE) { unsigned long ways, waysize, addrstart; waysize = cpu_data->dcache.sets; #ifdef CCR_CACHE_ORA /* * If the OC is already in RAM mode, we only have * half of the entries to flush.. */ if (ccr & CCR_CACHE_ORA) waysize >>= 1; #endif waysize <<= cpu_data->dcache.entry_shift; #ifdef CCR_CACHE_EMODE /* If EMODE is not set, we only have 1 way to flush. */ if (!(ccr & CCR_CACHE_EMODE)) ways = 1; else #endif ways = cpu_data->dcache.ways; addrstart = CACHE_OC_ADDRESS_ARRAY; do { unsigned long addr; for (addr = addrstart; addr < addrstart + waysize; addr += cpu_data->dcache.linesz) ctrl_outl(0, addr); addrstart += cpu_data->dcache.way_incr; } while (--ways); } /* * Default CCR values .. enable the caches * and invalidate them immediately.. */ flags = CCR_CACHE_ENABLE | CCR_CACHE_INVALIDATE; #ifdef CCR_CACHE_EMODE /* Force EMODE if possible */ if (cpu_data->dcache.ways > 1) flags |= CCR_CACHE_EMODE; else flags &= ~CCR_CACHE_EMODE; #endif #ifdef CONFIG_SH_WRITETHROUGH /* Turn on Write-through caching */ flags |= CCR_CACHE_WT; #else /* .. or default to Write-back */ flags |= CCR_CACHE_CB; #endif #ifdef CONFIG_SH_OCRAM /* Turn on OCRAM -- halve the OC */ flags |= CCR_CACHE_ORA; cpu_data->dcache.sets >>= 1; cpu_data->dcache.way_size = cpu_data->dcache.sets * cpu_data->dcache.linesz; #endif ctrl_outl(flags, CCR); back_to_P1(); } #ifdef CONFIG_SH_DSP static void __init release_dsp(void) { unsigned long sr; /* Clear SR.DSP bit */ __asm__ __volatile__ ( "stc\tsr, %0\n\t" "and\t%1, %0\n\t" "ldc\t%0, sr\n\t" : "=&r" (sr) : "r" (~SR_DSP) ); } static void __init dsp_init(void) { unsigned long sr; /* * Set the SR.DSP bit, wait for one instruction, and then read * back the SR value. */ __asm__ __volatile__ ( "stc\tsr, %0\n\t" "or\t%1, %0\n\t" "ldc\t%0, sr\n\t" "nop\n\t" "stc\tsr, %0\n\t" : "=&r" (sr) : "r" (SR_DSP) ); /* If the DSP bit is still set, this CPU has a DSP */ if (sr & SR_DSP) cpu_data->flags |= CPU_HAS_DSP; /* Now that we've determined the DSP status, clear the DSP bit. */ release_dsp(); } #endif /* CONFIG_SH_DSP */ /** * sh_cpu_init * * This is our initial entry point for each CPU, and is invoked on the boot * CPU prior to calling start_kernel(). For SMP, a combination of this and * start_secondary() will bring up each processor to a ready state prior * to hand forking the idle loop. * * We do all of the basic processor init here, including setting up the * caches, FPU, DSP, kicking the UBC, etc. By the time start_kernel() is * hit (and subsequently platform_setup()) things like determining the * CPU subtype and initial configuration will all be done. * * Each processor family is still responsible for doing its own probing * and cache configuration in detect_cpu_and_cache_system(). */ asmlinkage void __init sh_cpu_init(void) { /* First, probe the CPU */ detect_cpu_and_cache_system(); /* Init the cache */ cache_init(); shm_align_mask = max_t(unsigned long, cpu_data->dcache.way_size - 1, PAGE_SIZE - 1); /* Disable the FPU */ if (fpu_disabled) { printk("FPU Disabled\n"); cpu_data->flags &= ~CPU_HAS_FPU; disable_fpu(); } /* FPU initialization */ if ((cpu_data->flags & CPU_HAS_FPU)) { clear_thread_flag(TIF_USEDFPU); clear_used_math(); } #ifdef CONFIG_SH_DSP /* Probe for DSP */ dsp_init(); /* Disable the DSP */ if (dsp_disabled) { printk("DSP Disabled\n"); cpu_data->flags &= ~CPU_HAS_DSP; release_dsp(); } #endif #ifdef CONFIG_UBC_WAKEUP /* * Some brain-damaged loaders decided it would be a good idea to put * the UBC to sleep. This causes some issues when it comes to things * like PTRACE_SINGLESTEP or doing hardware watchpoints in GDB. So .. * we wake it up and hope that all is well. */ ubc_wakeup(); #endif }