/* pci_sun4v.c: SUN4V specific PCI controller support. * * Copyright (C) 2006, 2007 David S. Miller (davem@davemloft.net) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pci_impl.h" #include "iommu_common.h" #include "pci_sun4v.h" static unsigned long vpci_major = 1; static unsigned long vpci_minor = 1; #define PGLIST_NENTS (PAGE_SIZE / sizeof(u64)) struct iommu_batch { struct device *dev; /* Device mapping is for. */ unsigned long prot; /* IOMMU page protections */ unsigned long entry; /* Index into IOTSB. */ u64 *pglist; /* List of physical pages */ unsigned long npages; /* Number of pages in list. */ }; static DEFINE_PER_CPU(struct iommu_batch, iommu_batch); /* Interrupts must be disabled. */ static inline void iommu_batch_start(struct device *dev, unsigned long prot, unsigned long entry) { struct iommu_batch *p = &__get_cpu_var(iommu_batch); p->dev = dev; p->prot = prot; p->entry = entry; p->npages = 0; } /* Interrupts must be disabled. */ static long iommu_batch_flush(struct iommu_batch *p) { struct pci_pbm_info *pbm = p->dev->archdata.host_controller; unsigned long devhandle = pbm->devhandle; unsigned long prot = p->prot; unsigned long entry = p->entry; u64 *pglist = p->pglist; unsigned long npages = p->npages; while (npages != 0) { long num; num = pci_sun4v_iommu_map(devhandle, HV_PCI_TSBID(0, entry), npages, prot, __pa(pglist)); if (unlikely(num < 0)) { if (printk_ratelimit()) printk("iommu_batch_flush: IOMMU map of " "[%08lx:%08lx:%lx:%lx:%lx] failed with " "status %ld\n", devhandle, HV_PCI_TSBID(0, entry), npages, prot, __pa(pglist), num); return -1; } entry += num; npages -= num; pglist += num; } p->entry = entry; p->npages = 0; return 0; } /* Interrupts must be disabled. */ static inline long iommu_batch_add(u64 phys_page) { struct iommu_batch *p = &__get_cpu_var(iommu_batch); BUG_ON(p->npages >= PGLIST_NENTS); p->pglist[p->npages++] = phys_page; if (p->npages == PGLIST_NENTS) return iommu_batch_flush(p); return 0; } /* Interrupts must be disabled. */ static inline long iommu_batch_end(void) { struct iommu_batch *p = &__get_cpu_var(iommu_batch); BUG_ON(p->npages >= PGLIST_NENTS); return iommu_batch_flush(p); } static long arena_alloc(struct iommu_arena *arena, unsigned long npages) { unsigned long n, i, start, end, limit; int pass; limit = arena->limit; start = arena->hint; pass = 0; again: n = find_next_zero_bit(arena->map, limit, start); end = n + npages; if (unlikely(end >= limit)) { if (likely(pass < 1)) { limit = start; start = 0; pass++; goto again; } else { /* Scanned the whole thing, give up. */ return -1; } } for (i = n; i < end; i++) { if (test_bit(i, arena->map)) { start = i + 1; goto again; } } for (i = n; i < end; i++) __set_bit(i, arena->map); arena->hint = end; return n; } static void arena_free(struct iommu_arena *arena, unsigned long base, unsigned long npages) { unsigned long i; for (i = base; i < (base + npages); i++) __clear_bit(i, arena->map); } static void *dma_4v_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_addrp, gfp_t gfp) { struct iommu *iommu; unsigned long flags, order, first_page, npages, n; void *ret; long entry; size = IO_PAGE_ALIGN(size); order = get_order(size); if (unlikely(order >= MAX_ORDER)) return NULL; npages = size >> IO_PAGE_SHIFT; first_page = __get_free_pages(gfp, order); if (unlikely(first_page == 0UL)) return NULL; memset((char *)first_page, 0, PAGE_SIZE << order); iommu = dev->archdata.iommu; spin_lock_irqsave(&iommu->lock, flags); entry = arena_alloc(&iommu->arena, npages); spin_unlock_irqrestore(&iommu->lock, flags); if (unlikely(entry < 0L)) goto arena_alloc_fail; *dma_addrp = (iommu->page_table_map_base + (entry << IO_PAGE_SHIFT)); ret = (void *) first_page; first_page = __pa(first_page); local_irq_save(flags); iommu_batch_start(dev, (HV_PCI_MAP_ATTR_READ | HV_PCI_MAP_ATTR_WRITE), entry); for (n = 0; n < npages; n++) { long err = iommu_batch_add(first_page + (n * PAGE_SIZE)); if (unlikely(err < 0L)) goto iommu_map_fail; } if (unlikely(iommu_batch_end() < 0L)) goto iommu_map_fail; local_irq_restore(flags); return ret; iommu_map_fail: /* Interrupts are disabled. */ spin_lock(&iommu->lock); arena_free(&iommu->arena, entry, npages); spin_unlock_irqrestore(&iommu->lock, flags); arena_alloc_fail: free_pages(first_page, order); return NULL; } static void dma_4v_free_coherent(struct device *dev, size_t size, void *cpu, dma_addr_t dvma) { struct pci_pbm_info *pbm; struct iommu *iommu; unsigned long flags, order, npages, entry; u32 devhandle; npages = IO_PAGE_ALIGN(size) >> IO_PAGE_SHIFT; iommu = dev->archdata.iommu; pbm = dev->archdata.host_controller; devhandle = pbm->devhandle; entry = ((dvma - iommu->page_table_map_base) >> IO_PAGE_SHIFT); spin_lock_irqsave(&iommu->lock, flags); arena_free(&iommu->arena, entry, npages); do { unsigned long num; num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry), npages); entry += num; npages -= num; } while (npages != 0); spin_unlock_irqrestore(&iommu->lock, flags); order = get_order(size); if (order < 10) free_pages((unsigned long)cpu, order); } static dma_addr_t dma_4v_map_single(struct device *dev, void *ptr, size_t sz, enum dma_data_direction direction) { struct iommu *iommu; unsigned long flags, npages, oaddr; unsigned long i, base_paddr; u32 bus_addr, ret; unsigned long prot; long entry; iommu = dev->archdata.iommu; if (unlikely(direction == DMA_NONE)) goto bad; oaddr = (unsigned long)ptr; npages = IO_PAGE_ALIGN(oaddr + sz) - (oaddr & IO_PAGE_MASK); npages >>= IO_PAGE_SHIFT; spin_lock_irqsave(&iommu->lock, flags); entry = arena_alloc(&iommu->arena, npages); spin_unlock_irqrestore(&iommu->lock, flags); if (unlikely(entry < 0L)) goto bad; bus_addr = (iommu->page_table_map_base + (entry << IO_PAGE_SHIFT)); ret = bus_addr | (oaddr & ~IO_PAGE_MASK); base_paddr = __pa(oaddr & IO_PAGE_MASK); prot = HV_PCI_MAP_ATTR_READ; if (direction != DMA_TO_DEVICE) prot |= HV_PCI_MAP_ATTR_WRITE; local_irq_save(flags); iommu_batch_start(dev, prot, entry); for (i = 0; i < npages; i++, base_paddr += IO_PAGE_SIZE) { long err = iommu_batch_add(base_paddr); if (unlikely(err < 0L)) goto iommu_map_fail; } if (unlikely(iommu_batch_end() < 0L)) goto iommu_map_fail; local_irq_restore(flags); return ret; bad: if (printk_ratelimit()) WARN_ON(1); return DMA_ERROR_CODE; iommu_map_fail: /* Interrupts are disabled. */ spin_lock(&iommu->lock); arena_free(&iommu->arena, entry, npages); spin_unlock_irqrestore(&iommu->lock, flags); return DMA_ERROR_CODE; } static void dma_4v_unmap_single(struct device *dev, dma_addr_t bus_addr, size_t sz, enum dma_data_direction direction) { struct pci_pbm_info *pbm; struct iommu *iommu; unsigned long flags, npages; long entry; u32 devhandle; if (unlikely(direction == DMA_NONE)) { if (printk_ratelimit()) WARN_ON(1); return; } iommu = dev->archdata.iommu; pbm = dev->archdata.host_controller; devhandle = pbm->devhandle; npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK); npages >>= IO_PAGE_SHIFT; bus_addr &= IO_PAGE_MASK; spin_lock_irqsave(&iommu->lock, flags); entry = (bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT; arena_free(&iommu->arena, entry, npages); do { unsigned long num; num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry), npages); entry += num; npages -= num; } while (npages != 0); spin_unlock_irqrestore(&iommu->lock, flags); } #define SG_ENT_PHYS_ADDRESS(SG) \ (__pa(page_address((SG)->page)) + (SG)->offset) static inline long fill_sg(long entry, struct device *dev, struct scatterlist *sg, int nused, int nelems, unsigned long prot) { struct scatterlist *dma_sg = sg; struct scatterlist *sg_end = sg + nelems; unsigned long flags; int i; local_irq_save(flags); iommu_batch_start(dev, prot, entry); for (i = 0; i < nused; i++) { unsigned long pteval = ~0UL; u32 dma_npages; dma_npages = ((dma_sg->dma_address & (IO_PAGE_SIZE - 1UL)) + dma_sg->dma_length + ((IO_PAGE_SIZE - 1UL))) >> IO_PAGE_SHIFT; do { unsigned long offset; signed int len; /* If we are here, we know we have at least one * more page to map. So walk forward until we * hit a page crossing, and begin creating new * mappings from that spot. */ for (;;) { unsigned long tmp; tmp = SG_ENT_PHYS_ADDRESS(sg); len = sg->length; if (((tmp ^ pteval) >> IO_PAGE_SHIFT) != 0UL) { pteval = tmp & IO_PAGE_MASK; offset = tmp & (IO_PAGE_SIZE - 1UL); break; } if (((tmp ^ (tmp + len - 1UL)) >> IO_PAGE_SHIFT) != 0UL) { pteval = (tmp + IO_PAGE_SIZE) & IO_PAGE_MASK; offset = 0UL; len -= (IO_PAGE_SIZE - (tmp & (IO_PAGE_SIZE - 1UL))); break; } sg++; } pteval = (pteval & IOPTE_PAGE); while (len > 0) { long err; err = iommu_batch_add(pteval); if (unlikely(err < 0L)) goto iommu_map_failed; pteval += IO_PAGE_SIZE; len -= (IO_PAGE_SIZE - offset); offset = 0; dma_npages--; } pteval = (pteval & IOPTE_PAGE) + len; sg++; /* Skip over any tail mappings we've fully mapped, * adjusting pteval along the way. Stop when we * detect a page crossing event. */ while (sg < sg_end && (pteval << (64 - IO_PAGE_SHIFT)) != 0UL && (pteval == SG_ENT_PHYS_ADDRESS(sg)) && ((pteval ^ (SG_ENT_PHYS_ADDRESS(sg) + sg->length - 1UL)) >> IO_PAGE_SHIFT) == 0UL) { pteval += sg->length; sg++; } if ((pteval << (64 - IO_PAGE_SHIFT)) == 0UL) pteval = ~0UL; } while (dma_npages != 0); dma_sg++; } if (unlikely(iommu_batch_end() < 0L)) goto iommu_map_failed; local_irq_restore(flags); return 0; iommu_map_failed: local_irq_restore(flags); return -1L; } static int dma_4v_map_sg(struct device *dev, struct scatterlist *sglist, int nelems, enum dma_data_direction direction) { struct iommu *iommu; unsigned long flags, npages, prot; u32 dma_base; struct scatterlist *sgtmp; long entry, err; int used; /* Fast path single entry scatterlists. */ if (nelems == 1) { sglist->dma_address = dma_4v_map_single(dev, (page_address(sglist->page) + sglist->offset), sglist->length, direction); if (unlikely(sglist->dma_address == DMA_ERROR_CODE)) return 0; sglist->dma_length = sglist->length; return 1; } iommu = dev->archdata.iommu; if (unlikely(direction == DMA_NONE)) goto bad; /* Step 1: Prepare scatter list. */ npages = prepare_sg(sglist, nelems); /* Step 2: Allocate a cluster and context, if necessary. */ spin_lock_irqsave(&iommu->lock, flags); entry = arena_alloc(&iommu->arena, npages); spin_unlock_irqrestore(&iommu->lock, flags); if (unlikely(entry < 0L)) goto bad; dma_base = iommu->page_table_map_base + (entry << IO_PAGE_SHIFT); /* Step 3: Normalize DMA addresses. */ used = nelems; sgtmp = sglist; while (used && sgtmp->dma_length) { sgtmp->dma_address += dma_base; sgtmp++; used--; } used = nelems - used; /* Step 4: Create the mappings. */ prot = HV_PCI_MAP_ATTR_READ; if (direction != DMA_TO_DEVICE) prot |= HV_PCI_MAP_ATTR_WRITE; err = fill_sg(entry, dev, sglist, used, nelems, prot); if (unlikely(err < 0L)) goto iommu_map_failed; return used; bad: if (printk_ratelimit()) WARN_ON(1); return 0; iommu_map_failed: spin_lock_irqsave(&iommu->lock, flags); arena_free(&iommu->arena, entry, npages); spin_unlock_irqrestore(&iommu->lock, flags); return 0; } static void dma_4v_unmap_sg(struct device *dev, struct scatterlist *sglist, int nelems, enum dma_data_direction direction) { struct pci_pbm_info *pbm; struct iommu *iommu; unsigned long flags, i, npages; long entry; u32 devhandle, bus_addr; if (unlikely(direction == DMA_NONE)) { if (printk_ratelimit()) WARN_ON(1); } iommu = dev->archdata.iommu; pbm = dev->archdata.host_controller; devhandle = pbm->devhandle; bus_addr = sglist->dma_address & IO_PAGE_MASK; for (i = 1; i < nelems; i++) if (sglist[i].dma_length == 0) break; i--; npages = (IO_PAGE_ALIGN(sglist[i].dma_address + sglist[i].dma_length) - bus_addr) >> IO_PAGE_SHIFT; entry = ((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT); spin_lock_irqsave(&iommu->lock, flags); arena_free(&iommu->arena, entry, npages); do { unsigned long num; num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry), npages); entry += num; npages -= num; } while (npages != 0); spin_unlock_irqrestore(&iommu->lock, flags); } static void dma_4v_sync_single_for_cpu(struct device *dev, dma_addr_t bus_addr, size_t sz, enum dma_data_direction direction) { /* Nothing to do... */ } static void dma_4v_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist, int nelems, enum dma_data_direction direction) { /* Nothing to do... */ } const struct dma_ops sun4v_dma_ops = { .alloc_coherent = dma_4v_alloc_coherent, .free_coherent = dma_4v_free_coherent, .map_single = dma_4v_map_single, .unmap_single = dma_4v_unmap_single, .map_sg = dma_4v_map_sg, .unmap_sg = dma_4v_unmap_sg, .sync_single_for_cpu = dma_4v_sync_single_for_cpu, .sync_sg_for_cpu = dma_4v_sync_sg_for_cpu, }; static void pci_sun4v_scan_bus(struct pci_pbm_info *pbm) { struct property *prop; struct device_node *dp; dp = pbm->prom_node; prop = of_find_property(dp, "66mhz-capable", NULL); pbm->is_66mhz_capable = (prop != NULL); pbm->pci_bus = pci_scan_one_pbm(pbm); /* XXX register error interrupt handlers XXX */ } static unsigned long probe_existing_entries(struct pci_pbm_info *pbm, struct iommu *iommu) { struct iommu_arena *arena = &iommu->arena; unsigned long i, cnt = 0; u32 devhandle; devhandle = pbm->devhandle; for (i = 0; i < arena->limit; i++) { unsigned long ret, io_attrs, ra; ret = pci_sun4v_iommu_getmap(devhandle, HV_PCI_TSBID(0, i), &io_attrs, &ra); if (ret == HV_EOK) { if (page_in_phys_avail(ra)) { pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, i), 1); } else { cnt++; __set_bit(i, arena->map); } } } return cnt; } static void pci_sun4v_iommu_init(struct pci_pbm_info *pbm) { struct iommu *iommu = pbm->iommu; struct property *prop; unsigned long num_tsb_entries, sz, tsbsize; u32 vdma[2], dma_mask, dma_offset; prop = of_find_property(pbm->prom_node, "virtual-dma", NULL); if (prop) { u32 *val = prop->value; vdma[0] = val[0]; vdma[1] = val[1]; } else { /* No property, use default values. */ vdma[0] = 0x80000000; vdma[1] = 0x80000000; } if ((vdma[0] | vdma[1]) & ~IO_PAGE_MASK) { prom_printf("PCI-SUN4V: strange virtual-dma[%08x:%08x].\n", vdma[0], vdma[1]); prom_halt(); }; dma_mask = (roundup_pow_of_two(vdma[1]) - 1UL); num_tsb_entries = vdma[1] / IO_PAGE_SIZE; tsbsize = num_tsb_entries * sizeof(iopte_t); dma_offset = vdma[0]; /* Setup initial software IOMMU state. */ spin_lock_init(&iommu->lock); iommu->ctx_lowest_free = 1; iommu->page_table_map_base = dma_offset; iommu->dma_addr_mask = dma_mask; /* Allocate and initialize the free area map. */ sz = (num_tsb_entries + 7) / 8; sz = (sz + 7UL) & ~7UL; iommu->arena.map = kzalloc(sz, GFP_KERNEL); if (!iommu->arena.map) { prom_printf("PCI_IOMMU: Error, kmalloc(arena.map) failed.\n"); prom_halt(); } iommu->arena.limit = num_tsb_entries; sz = probe_existing_entries(pbm, iommu); if (sz) printk("%s: Imported %lu TSB entries from OBP\n", pbm->name, sz); } #ifdef CONFIG_PCI_MSI struct pci_sun4v_msiq_entry { u64 version_type; #define MSIQ_VERSION_MASK 0xffffffff00000000UL #define MSIQ_VERSION_SHIFT 32 #define MSIQ_TYPE_MASK 0x00000000000000ffUL #define MSIQ_TYPE_SHIFT 0 #define MSIQ_TYPE_NONE 0x00 #define MSIQ_TYPE_MSG 0x01 #define MSIQ_TYPE_MSI32 0x02 #define MSIQ_TYPE_MSI64 0x03 #define MSIQ_TYPE_INTX 0x08 #define MSIQ_TYPE_NONE2 0xff u64 intx_sysino; u64 reserved1; u64 stick; u64 req_id; /* bus/device/func */ #define MSIQ_REQID_BUS_MASK 0xff00UL #define MSIQ_REQID_BUS_SHIFT 8 #define MSIQ_REQID_DEVICE_MASK 0x00f8UL #define MSIQ_REQID_DEVICE_SHIFT 3 #define MSIQ_REQID_FUNC_MASK 0x0007UL #define MSIQ_REQID_FUNC_SHIFT 0 u64 msi_address; /* The format of this value is message type dependent. * For MSI bits 15:0 are the data from the MSI packet. * For MSI-X bits 31:0 are the data from the MSI packet. * For MSG, the message code and message routing code where: * bits 39:32 is the bus/device/fn of the msg target-id * bits 18:16 is the message routing code * bits 7:0 is the message code * For INTx the low order 2-bits are: * 00 - INTA * 01 - INTB * 10 - INTC * 11 - INTD */ u64 msi_data; u64 reserved2; }; /* For now this just runs as a pre-handler for the real interrupt handler. * So we just walk through the queue and ACK all the entries, update the * head pointer, and return. * * In the longer term it would be nice to do something more integrated * wherein we can pass in some of this MSI info to the drivers. This * would be most useful for PCIe fabric error messages, although we could * invoke those directly from the loop here in order to pass the info around. */ static void pci_sun4v_msi_prehandler(unsigned int ino, void *data1, void *data2) { struct pci_pbm_info *pbm = data1; struct pci_sun4v_msiq_entry *base, *ep; unsigned long msiqid, orig_head, head, type, err; msiqid = (unsigned long) data2; head = 0xdeadbeef; err = pci_sun4v_msiq_gethead(pbm->devhandle, msiqid, &head); if (unlikely(err)) goto hv_error_get; if (unlikely(head >= (pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry)))) goto bad_offset; head /= sizeof(struct pci_sun4v_msiq_entry); orig_head = head; base = (pbm->msi_queues + ((msiqid - pbm->msiq_first) * (pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry)))); ep = &base[head]; while ((ep->version_type & MSIQ_TYPE_MASK) != 0) { type = (ep->version_type & MSIQ_TYPE_MASK) >> MSIQ_TYPE_SHIFT; if (unlikely(type != MSIQ_TYPE_MSI32 && type != MSIQ_TYPE_MSI64)) goto bad_type; pci_sun4v_msi_setstate(pbm->devhandle, ep->msi_data /* msi_num */, HV_MSISTATE_IDLE); /* Clear the entry. */ ep->version_type &= ~MSIQ_TYPE_MASK; /* Go to next entry in ring. */ head++; if (head >= pbm->msiq_ent_count) head = 0; ep = &base[head]; } if (likely(head != orig_head)) { /* ACK entries by updating head pointer. */ head *= sizeof(struct pci_sun4v_msiq_entry); err = pci_sun4v_msiq_sethead(pbm->devhandle, msiqid, head); if (unlikely(err)) goto hv_error_set; } return; hv_error_set: printk(KERN_EMERG "MSI: Hypervisor set head gives error %lu\n", err); goto hv_error_cont; hv_error_get: printk(KERN_EMERG "MSI: Hypervisor get head gives error %lu\n", err); hv_error_cont: printk(KERN_EMERG "MSI: devhandle[%x] msiqid[%lx] head[%lu]\n", pbm->devhandle, msiqid, head); return; bad_offset: printk(KERN_EMERG "MSI: Hypervisor gives bad offset %lx max(%lx)\n", head, pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry)); return; bad_type: printk(KERN_EMERG "MSI: Entry has bad type %lx\n", type); return; } static int msi_bitmap_alloc(struct pci_pbm_info *pbm) { unsigned long size, bits_per_ulong; bits_per_ulong = sizeof(unsigned long) * 8; size = (pbm->msi_num + (bits_per_ulong - 1)) & ~(bits_per_ulong - 1); size /= 8; BUG_ON(size % sizeof(unsigned long)); pbm->msi_bitmap = kzalloc(size, GFP_KERNEL); if (!pbm->msi_bitmap) return -ENOMEM; return 0; } static void msi_bitmap_free(struct pci_pbm_info *pbm) { kfree(pbm->msi_bitmap); pbm->msi_bitmap = NULL; } static int msi_queue_alloc(struct pci_pbm_info *pbm) { unsigned long q_size, alloc_size, pages, order; int i; q_size = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry); alloc_size = (pbm->msiq_num * q_size); order = get_order(alloc_size); pages = __get_free_pages(GFP_KERNEL | __GFP_COMP, order); if (pages == 0UL) { printk(KERN_ERR "MSI: Cannot allocate MSI queues (o=%lu).\n", order); return -ENOMEM; } memset((char *)pages, 0, PAGE_SIZE << order); pbm->msi_queues = (void *) pages; for (i = 0; i < pbm->msiq_num; i++) { unsigned long err, base = __pa(pages + (i * q_size)); unsigned long ret1, ret2; err = pci_sun4v_msiq_conf(pbm->devhandle, pbm->msiq_first + i, base, pbm->msiq_ent_count); if (err) { printk(KERN_ERR "MSI: msiq register fails (err=%lu)\n", err); goto h_error; } err = pci_sun4v_msiq_info(pbm->devhandle, pbm->msiq_first + i, &ret1, &ret2); if (err) { printk(KERN_ERR "MSI: Cannot read msiq (err=%lu)\n", err); goto h_error; } if (ret1 != base || ret2 != pbm->msiq_ent_count) { printk(KERN_ERR "MSI: Bogus qconf " "expected[%lx:%x] got[%lx:%lx]\n", base, pbm->msiq_ent_count, ret1, ret2); goto h_error; } } return 0; h_error: free_pages(pages, order); return -EINVAL; } static int alloc_msi(struct pci_pbm_info *pbm) { int i; for (i = 0; i < pbm->msi_num; i++) { if (!test_and_set_bit(i, pbm->msi_bitmap)) return i + pbm->msi_first; } return -ENOENT; } static void free_msi(struct pci_pbm_info *pbm, int msi_num) { msi_num -= pbm->msi_first; clear_bit(msi_num, pbm->msi_bitmap); } static int pci_sun4v_setup_msi_irq(unsigned int *virt_irq_p, struct pci_dev *pdev, struct msi_desc *entry) { struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller; unsigned long devino, msiqid; struct msi_msg msg; int msi_num, err; *virt_irq_p = 0; msi_num = alloc_msi(pbm); if (msi_num < 0) return msi_num; err = sun4v_build_msi(pbm->devhandle, virt_irq_p, pbm->msiq_first_devino, (pbm->msiq_first_devino + pbm->msiq_num)); if (err < 0) goto out_err; devino = err; msiqid = ((devino - pbm->msiq_first_devino) + pbm->msiq_first); err = -EINVAL; if (pci_sun4v_msiq_setstate(pbm->devhandle, msiqid, HV_MSIQSTATE_IDLE)) if (err) goto out_err; if (pci_sun4v_msiq_setvalid(pbm->devhandle, msiqid, HV_MSIQ_VALID)) goto out_err; if (pci_sun4v_msi_setmsiq(pbm->devhandle, msi_num, msiqid, (entry->msi_attrib.is_64 ? HV_MSITYPE_MSI64 : HV_MSITYPE_MSI32))) goto out_err; if (pci_sun4v_msi_setstate(pbm->devhandle, msi_num, HV_MSISTATE_IDLE)) goto out_err; if (pci_sun4v_msi_setvalid(pbm->devhandle, msi_num, HV_MSIVALID_VALID)) goto out_err; sparc64_set_msi(*virt_irq_p, msi_num); if (entry->msi_attrib.is_64) { msg.address_hi = pbm->msi64_start >> 32; msg.address_lo = pbm->msi64_start & 0xffffffff; } else { msg.address_hi = 0; msg.address_lo = pbm->msi32_start; } msg.data = msi_num; set_irq_msi(*virt_irq_p, entry); write_msi_msg(*virt_irq_p, &msg); irq_install_pre_handler(*virt_irq_p, pci_sun4v_msi_prehandler, pbm, (void *) msiqid); return 0; out_err: free_msi(pbm, msi_num); return err; } static void pci_sun4v_teardown_msi_irq(unsigned int virt_irq, struct pci_dev *pdev) { struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller; unsigned long msiqid, err; unsigned int msi_num; msi_num = sparc64_get_msi(virt_irq); err = pci_sun4v_msi_getmsiq(pbm->devhandle, msi_num, &msiqid); if (err) { printk(KERN_ERR "%s: getmsiq gives error %lu\n", pbm->name, err); return; } pci_sun4v_msi_setvalid(pbm->devhandle, msi_num, HV_MSIVALID_INVALID); pci_sun4v_msiq_setvalid(pbm->devhandle, msiqid, HV_MSIQ_INVALID); free_msi(pbm, msi_num); /* The sun4v_destroy_msi() will liberate the devino and thus the MSIQ * allocation. */ sun4v_destroy_msi(virt_irq); } static void pci_sun4v_msi_init(struct pci_pbm_info *pbm) { const u32 *val; int len; val = of_get_property(pbm->prom_node, "#msi-eqs", &len); if (!val || len != 4) goto no_msi; pbm->msiq_num = *val; if (pbm->msiq_num) { const struct msiq_prop { u32 first_msiq; u32 num_msiq; u32 first_devino; } *mqp; const struct msi_range_prop { u32 first_msi; u32 num_msi; } *mrng; const struct addr_range_prop { u32 msi32_high; u32 msi32_low; u32 msi32_len; u32 msi64_high; u32 msi64_low; u32 msi64_len; } *arng; val = of_get_property(pbm->prom_node, "msi-eq-size", &len); if (!val || len != 4) goto no_msi; pbm->msiq_ent_count = *val; mqp = of_get_property(pbm->prom_node, "msi-eq-to-devino", &len); if (!mqp || len != sizeof(struct msiq_prop)) goto no_msi; pbm->msiq_first = mqp->first_msiq; pbm->msiq_first_devino = mqp->first_devino; val = of_get_property(pbm->prom_node, "#msi", &len); if (!val || len != 4) goto no_msi; pbm->msi_num = *val; mrng = of_get_property(pbm->prom_node, "msi-ranges", &len); if (!mrng || len != sizeof(struct msi_range_prop)) goto no_msi; pbm->msi_first = mrng->first_msi; val = of_get_property(pbm->prom_node, "msi-data-mask", &len); if (!val || len != 4) goto no_msi; pbm->msi_data_mask = *val; val = of_get_property(pbm->prom_node, "msix-data-width", &len); if (!val || len != 4) goto no_msi; pbm->msix_data_width = *val; arng = of_get_property(pbm->prom_node, "msi-address-ranges", &len); if (!arng || len != sizeof(struct addr_range_prop)) goto no_msi; pbm->msi32_start = ((u64)arng->msi32_high << 32) | (u64) arng->msi32_low; pbm->msi64_start = ((u64)arng->msi64_high << 32) | (u64) arng->msi64_low; pbm->msi32_len = arng->msi32_len; pbm->msi64_len = arng->msi64_len; if (msi_bitmap_alloc(pbm)) goto no_msi; if (msi_queue_alloc(pbm)) { msi_bitmap_free(pbm); goto no_msi; } printk(KERN_INFO "%s: MSI Queue first[%u] num[%u] count[%u] " "devino[0x%x]\n", pbm->name, pbm->msiq_first, pbm->msiq_num, pbm->msiq_ent_count, pbm->msiq_first_devino); printk(KERN_INFO "%s: MSI first[%u] num[%u] mask[0x%x] " "width[%u]\n", pbm->name, pbm->msi_first, pbm->msi_num, pbm->msi_data_mask, pbm->msix_data_width); printk(KERN_INFO "%s: MSI addr32[0x%lx:0x%x] " "addr64[0x%lx:0x%x]\n", pbm->name, pbm->msi32_start, pbm->msi32_len, pbm->msi64_start, pbm->msi64_len); printk(KERN_INFO "%s: MSI queues at RA [%p]\n", pbm->name, pbm->msi_queues); } pbm->setup_msi_irq = pci_sun4v_setup_msi_irq; pbm->teardown_msi_irq = pci_sun4v_teardown_msi_irq; return; no_msi: pbm->msiq_num = 0; printk(KERN_INFO "%s: No MSI support.\n", pbm->name); } #else /* CONFIG_PCI_MSI */ static void pci_sun4v_msi_init(struct pci_pbm_info *pbm) { } #endif /* !(CONFIG_PCI_MSI) */ static void __init pci_sun4v_pbm_init(struct pci_controller_info *p, struct device_node *dp, u32 devhandle) { struct pci_pbm_info *pbm; if (devhandle & 0x40) pbm = &p->pbm_B; else pbm = &p->pbm_A; pbm->next = pci_pbm_root; pci_pbm_root = pbm; pbm->scan_bus = pci_sun4v_scan_bus; pbm->pci_ops = &sun4v_pci_ops; pbm->config_space_reg_bits = 12; pbm->index = pci_num_pbms++; pbm->parent = p; pbm->prom_node = dp; pbm->devhandle = devhandle; pbm->name = dp->full_name; printk("%s: SUN4V PCI Bus Module\n", pbm->name); pci_determine_mem_io_space(pbm); pci_get_pbm_props(pbm); pci_sun4v_iommu_init(pbm); pci_sun4v_msi_init(pbm); } void __init sun4v_pci_init(struct device_node *dp, char *model_name) { static int hvapi_negotiated = 0; struct pci_controller_info *p; struct pci_pbm_info *pbm; struct iommu *iommu; struct property *prop; struct linux_prom64_registers *regs; u32 devhandle; int i; if (!hvapi_negotiated++) { int err = sun4v_hvapi_register(HV_GRP_PCI, vpci_major, &vpci_minor); if (err) { prom_printf("SUN4V_PCI: Could not register hvapi, " "err=%d\n", err); prom_halt(); } printk("SUN4V_PCI: Registered hvapi major[%lu] minor[%lu]\n", vpci_major, vpci_minor); dma_ops = &sun4v_dma_ops; } prop = of_find_property(dp, "reg", NULL); regs = prop->value; devhandle = (regs->phys_addr >> 32UL) & 0x0fffffff; for (pbm = pci_pbm_root; pbm; pbm = pbm->next) { if (pbm->devhandle == (devhandle ^ 0x40)) { pci_sun4v_pbm_init(pbm->parent, dp, devhandle); return; } } for_each_possible_cpu(i) { unsigned long page = get_zeroed_page(GFP_ATOMIC); if (!page) goto fatal_memory_error; per_cpu(iommu_batch, i).pglist = (u64 *) page; } p = kzalloc(sizeof(struct pci_controller_info), GFP_ATOMIC); if (!p) goto fatal_memory_error; iommu = kzalloc(sizeof(struct iommu), GFP_ATOMIC); if (!iommu) goto fatal_memory_error; p->pbm_A.iommu = iommu; iommu = kzalloc(sizeof(struct iommu), GFP_ATOMIC); if (!iommu) goto fatal_memory_error; p->pbm_B.iommu = iommu; /* Like PSYCHO and SCHIZO we have a 2GB aligned area * for memory space. */ pci_memspace_mask = 0x7fffffffUL; pci_sun4v_pbm_init(p, dp, devhandle); return; fatal_memory_error: prom_printf("SUN4V_PCI: Fatal memory allocation error.\n"); prom_halt(); }