/* semaphore.c: Sparc64 semaphore implementation. * * This is basically the PPC semaphore scheme ported to use * the sparc64 atomic instructions, so see the PPC code for * credits. */ #include #include #include /* * Atomically update sem->count. * This does the equivalent of the following: * * old_count = sem->count; * tmp = MAX(old_count, 0) + incr; * sem->count = tmp; * return old_count; */ static inline int __sem_update_count(struct semaphore *sem, int incr) { int old_count, tmp; __asm__ __volatile__("\n" " ! __sem_update_count old_count(%0) tmp(%1) incr(%4) &sem->count(%3)\n" "1: ldsw [%3], %0\n" " mov %0, %1\n" " cmp %0, 0\n" " movl %%icc, 0, %1\n" " add %1, %4, %1\n" " cas [%3], %0, %1\n" " cmp %0, %1\n" " membar #StoreLoad | #StoreStore\n" " bne,pn %%icc, 1b\n" " nop\n" : "=&r" (old_count), "=&r" (tmp), "=m" (sem->count) : "r" (&sem->count), "r" (incr), "m" (sem->count) : "cc"); return old_count; } static void __up(struct semaphore *sem) { __sem_update_count(sem, 1); wake_up(&sem->wait); } void up(struct semaphore *sem) { /* This atomically does: * old_val = sem->count; * new_val = sem->count + 1; * sem->count = new_val; * if (old_val < 0) * __up(sem); * * The (old_val < 0) test is equivalent to * the more straightforward (new_val <= 0), * but it is easier to test the former because * of how the CAS instruction works. */ __asm__ __volatile__("\n" " ! up sem(%0)\n" " membar #StoreLoad | #LoadLoad\n" "1: lduw [%0], %%g1\n" " add %%g1, 1, %%g7\n" " cas [%0], %%g1, %%g7\n" " cmp %%g1, %%g7\n" " bne,pn %%icc, 1b\n" " addcc %%g7, 1, %%g0\n" " membar #StoreLoad | #StoreStore\n" " ble,pn %%icc, 3f\n" " nop\n" "2:\n" " .subsection 2\n" "3: mov %0, %%g1\n" " save %%sp, -160, %%sp\n" " call %1\n" " mov %%g1, %%o0\n" " ba,pt %%xcc, 2b\n" " restore\n" " .previous\n" : : "r" (sem), "i" (__up) : "g1", "g2", "g3", "g7", "memory", "cc"); } static void __sched __down(struct semaphore * sem) { struct task_struct *tsk = current; DECLARE_WAITQUEUE(wait, tsk); tsk->state = TASK_UNINTERRUPTIBLE; add_wait_queue_exclusive(&sem->wait, &wait); while (__sem_update_count(sem, -1) <= 0) { schedule(); tsk->state = TASK_UNINTERRUPTIBLE; } remove_wait_queue(&sem->wait, &wait); tsk->state = TASK_RUNNING; wake_up(&sem->wait); } void __sched down(struct semaphore *sem) { might_sleep(); /* This atomically does: * old_val = sem->count; * new_val = sem->count - 1; * sem->count = new_val; * if (old_val < 1) * __down(sem); * * The (old_val < 1) test is equivalent to * the more straightforward (new_val < 0), * but it is easier to test the former because * of how the CAS instruction works. */ __asm__ __volatile__("\n" " ! down sem(%0)\n" "1: lduw [%0], %%g1\n" " sub %%g1, 1, %%g7\n" " cas [%0], %%g1, %%g7\n" " cmp %%g1, %%g7\n" " bne,pn %%icc, 1b\n" " cmp %%g7, 1\n" " membar #StoreLoad | #StoreStore\n" " bl,pn %%icc, 3f\n" " nop\n" "2:\n" " .subsection 2\n" "3: mov %0, %%g1\n" " save %%sp, -160, %%sp\n" " call %1\n" " mov %%g1, %%o0\n" " ba,pt %%xcc, 2b\n" " restore\n" " .previous\n" : : "r" (sem), "i" (__down) : "g1", "g2", "g3", "g7", "memory", "cc"); } int down_trylock(struct semaphore *sem) { int ret; /* This atomically does: * old_val = sem->count; * new_val = sem->count - 1; * if (old_val < 1) { * ret = 1; * } else { * sem->count = new_val; * ret = 0; * } * * The (old_val < 1) test is equivalent to * the more straightforward (new_val < 0), * but it is easier to test the former because * of how the CAS instruction works. */ __asm__ __volatile__("\n" " ! down_trylock sem(%1) ret(%0)\n" "1: lduw [%1], %%g1\n" " sub %%g1, 1, %%g7\n" " cmp %%g1, 1\n" " bl,pn %%icc, 2f\n" " mov 1, %0\n" " cas [%1], %%g1, %%g7\n" " cmp %%g1, %%g7\n" " bne,pn %%icc, 1b\n" " mov 0, %0\n" " membar #StoreLoad | #StoreStore\n" "2:\n" : "=&r" (ret) : "r" (sem) : "g1", "g7", "memory", "cc"); return ret; } static int __sched __down_interruptible(struct semaphore * sem) { int retval = 0; struct task_struct *tsk = current; DECLARE_WAITQUEUE(wait, tsk); tsk->state = TASK_INTERRUPTIBLE; add_wait_queue_exclusive(&sem->wait, &wait); while (__sem_update_count(sem, -1) <= 0) { if (signal_pending(current)) { __sem_update_count(sem, 0); retval = -EINTR; break; } schedule(); tsk->state = TASK_INTERRUPTIBLE; } tsk->state = TASK_RUNNING; remove_wait_queue(&sem->wait, &wait); wake_up(&sem->wait); return retval; } int __sched down_interruptible(struct semaphore *sem) { int ret = 0; might_sleep(); /* This atomically does: * old_val = sem->count; * new_val = sem->count - 1; * sem->count = new_val; * if (old_val < 1) * ret = __down_interruptible(sem); * * The (old_val < 1) test is equivalent to * the more straightforward (new_val < 0), * but it is easier to test the former because * of how the CAS instruction works. */ __asm__ __volatile__("\n" " ! down_interruptible sem(%2) ret(%0)\n" "1: lduw [%2], %%g1\n" " sub %%g1, 1, %%g7\n" " cas [%2], %%g1, %%g7\n" " cmp %%g1, %%g7\n" " bne,pn %%icc, 1b\n" " cmp %%g7, 1\n" " membar #StoreLoad | #StoreStore\n" " bl,pn %%icc, 3f\n" " nop\n" "2:\n" " .subsection 2\n" "3: mov %2, %%g1\n" " save %%sp, -160, %%sp\n" " call %3\n" " mov %%g1, %%o0\n" " ba,pt %%xcc, 2b\n" " restore\n" " .previous\n" : "=r" (ret) : "0" (ret), "r" (sem), "i" (__down_interruptible) : "g1", "g2", "g3", "g7", "memory", "cc"); return ret; }