/* * Copyright (C) 2002 Jeff Dike (jdike@karaya.com) * Licensed under the GPL */ #include "linux/sched.h" #include "linux/signal.h" #include "linux/kernel.h" #include "linux/interrupt.h" #include "linux/ptrace.h" #include "asm/system.h" #include "asm/pgalloc.h" #include "asm/ptrace.h" #include "asm/tlbflush.h" #include "irq_user.h" #include "kern_util.h" #include "os.h" #include "kern.h" #include "sigcontext.h" #include "mem_user.h" #include "tlb.h" #include "mode.h" #include "mode_kern.h" #include "init.h" #include "tt.h" void switch_to_tt(void *prev, void *next) { struct task_struct *from, *to, *prev_sched; unsigned long flags; int err, vtalrm, alrm, prof, cpu; char c; from = prev; to = next; cpu = task_thread_info(from)->cpu; if(cpu == 0) forward_interrupts(to->thread.mode.tt.extern_pid); #ifdef CONFIG_SMP forward_ipi(cpu_data[cpu].ipi_pipe[0], to->thread.mode.tt.extern_pid); #endif local_irq_save(flags); vtalrm = change_sig(SIGVTALRM, 0); alrm = change_sig(SIGALRM, 0); prof = change_sig(SIGPROF, 0); forward_pending_sigio(to->thread.mode.tt.extern_pid); c = 0; /* Notice that here we "up" the semaphore on which "to" is waiting, and * below (the read) we wait on this semaphore (which is implemented by * switch_pipe) and go sleeping. Thus, after that, we have resumed in * "to", and can't use any more the value of "from" (which is outdated), * nor the value in "to" (since it was the task which stole us the CPU, * which we don't care about). */ err = os_write_file(to->thread.mode.tt.switch_pipe[1], &c, sizeof(c)); if(err != sizeof(c)) panic("write of switch_pipe failed, err = %d", -err); if(from->thread.mode.tt.switch_pipe[0] == -1) os_kill_process(os_getpid(), 0); err = os_read_file(from->thread.mode.tt.switch_pipe[0], &c, sizeof(c)); if(err != sizeof(c)) panic("read of switch_pipe failed, errno = %d", -err); /* If the process that we have just scheduled away from has exited, * then it needs to be killed here. The reason is that, even though * it will kill itself when it next runs, that may be too late. Its * stack will be freed, possibly before then, and if that happens, * we have a use-after-free situation. So, it gets killed here * in case it has not already killed itself. */ prev_sched = current->thread.prev_sched; if(prev_sched->thread.mode.tt.switch_pipe[0] == -1) os_kill_process(prev_sched->thread.mode.tt.extern_pid, 1); change_sig(SIGVTALRM, vtalrm); change_sig(SIGALRM, alrm); change_sig(SIGPROF, prof); arch_switch_to_tt(prev_sched, current); flush_tlb_all(); local_irq_restore(flags); } void release_thread_tt(struct task_struct *task) { int pid = task->thread.mode.tt.extern_pid; /* * We first have to kill the other process, before * closing its switch_pipe. Else it might wake up * and receive "EOF" before we could kill it. */ if(os_getpid() != pid) os_kill_process(pid, 0); os_close_file(task->thread.mode.tt.switch_pipe[0]); os_close_file(task->thread.mode.tt.switch_pipe[1]); /* use switch_pipe as flag: thread is released */ task->thread.mode.tt.switch_pipe[0] = -1; } void suspend_new_thread(int fd) { int err; char c; os_stop_process(os_getpid()); err = os_read_file(fd, &c, sizeof(c)); if(err != sizeof(c)) panic("read failed in suspend_new_thread, err = %d", -err); } void schedule_tail(struct task_struct *prev); static void new_thread_handler(int sig) { unsigned long disable; int (*fn)(void *); void *arg; fn = current->thread.request.u.thread.proc; arg = current->thread.request.u.thread.arg; UPT_SC(¤t->thread.regs.regs) = (void *) (&sig + 1); disable = (1 << (SIGVTALRM - 1)) | (1 << (SIGALRM - 1)) | (1 << (SIGIO - 1)) | (1 << (SIGPROF - 1)); SC_SIGMASK(UPT_SC(¤t->thread.regs.regs)) &= ~disable; suspend_new_thread(current->thread.mode.tt.switch_pipe[0]); force_flush_all(); if(current->thread.prev_sched != NULL) schedule_tail(current->thread.prev_sched); current->thread.prev_sched = NULL; init_new_thread_signals(); enable_timer(); free_page(current->thread.temp_stack); set_cmdline("(kernel thread)"); change_sig(SIGUSR1, 1); change_sig(SIGPROF, 1); local_irq_enable(); if(!run_kernel_thread(fn, arg, ¤t->thread.exec_buf)) do_exit(0); /* XXX No set_user_mode here because a newly execed process will * immediately segfault on its non-existent IP, coming straight back * to the signal handler, which will call set_user_mode on its way * out. This should probably change since it's confusing. */ } static int new_thread_proc(void *stack) { /* local_irq_disable is needed to block out signals until this thread is * properly scheduled. Otherwise, the tracing thread will get mighty * upset about any signals that arrive before that. * This has the complication that it sets the saved signal mask in * the sigcontext to block signals. This gets restored when this * thread (or a descendant, since they get a copy of this sigcontext) * returns to userspace. * So, this is compensated for elsewhere. * XXX There is still a small window until local_irq_disable() actually * finishes where signals are possible - shouldn't be a problem in * practice since SIGIO hasn't been forwarded here yet, and the * local_irq_disable should finish before a SIGVTALRM has time to be * delivered. */ local_irq_disable(); init_new_thread_stack(stack, new_thread_handler); os_usr1_process(os_getpid()); change_sig(SIGUSR1, 1); return(0); } /* Signal masking - signals are blocked at the start of fork_tramp. They * are re-enabled when finish_fork_handler is entered by fork_tramp hitting * itself with a SIGUSR1. set_user_mode has to be run with SIGUSR1 off, * so it is blocked before it's called. They are re-enabled on sigreturn * despite the fact that they were blocked when the SIGUSR1 was issued because * copy_thread copies the parent's sigcontext, including the signal mask * onto the signal frame. */ void finish_fork_handler(int sig) { UPT_SC(¤t->thread.regs.regs) = (void *) (&sig + 1); suspend_new_thread(current->thread.mode.tt.switch_pipe[0]); force_flush_all(); if(current->thread.prev_sched != NULL) schedule_tail(current->thread.prev_sched); current->thread.prev_sched = NULL; enable_timer(); change_sig(SIGVTALRM, 1); local_irq_enable(); if(current->mm != current->parent->mm) protect_memory(uml_reserved, high_physmem - uml_reserved, 1, 1, 0, 1); task_protections((unsigned long) current_thread); free_page(current->thread.temp_stack); local_irq_disable(); change_sig(SIGUSR1, 0); set_user_mode(current); } int fork_tramp(void *stack) { local_irq_disable(); arch_init_thread(); init_new_thread_stack(stack, finish_fork_handler); os_usr1_process(os_getpid()); change_sig(SIGUSR1, 1); return(0); } int copy_thread_tt(int nr, unsigned long clone_flags, unsigned long sp, unsigned long stack_top, struct task_struct * p, struct pt_regs *regs) { int (*tramp)(void *); int new_pid, err; unsigned long stack; if(current->thread.forking) tramp = fork_tramp; else { tramp = new_thread_proc; p->thread.request.u.thread = current->thread.request.u.thread; } err = os_pipe(p->thread.mode.tt.switch_pipe, 1, 1); if(err < 0){ printk("copy_thread : pipe failed, err = %d\n", -err); return(err); } stack = alloc_stack(0, 0); if(stack == 0){ printk(KERN_ERR "copy_thread : failed to allocate " "temporary stack\n"); return(-ENOMEM); } clone_flags &= CLONE_VM; p->thread.temp_stack = stack; new_pid = start_fork_tramp(task_stack_page(p), stack, clone_flags, tramp); if(new_pid < 0){ printk(KERN_ERR "copy_thread : clone failed - errno = %d\n", -new_pid); return(new_pid); } if(current->thread.forking){ sc_to_sc(UPT_SC(&p->thread.regs.regs), UPT_SC(®s->regs)); SC_SET_SYSCALL_RETURN(UPT_SC(&p->thread.regs.regs), 0); if(sp != 0) SC_SP(UPT_SC(&p->thread.regs.regs)) = sp; } p->thread.mode.tt.extern_pid = new_pid; current->thread.request.op = OP_FORK; current->thread.request.u.fork.pid = new_pid; os_usr1_process(os_getpid()); /* Enable the signal and then disable it to ensure that it is handled * here, and nowhere else. */ change_sig(SIGUSR1, 1); change_sig(SIGUSR1, 0); err = 0; return(err); } void reboot_tt(void) { current->thread.request.op = OP_REBOOT; os_usr1_process(os_getpid()); change_sig(SIGUSR1, 1); } void halt_tt(void) { current->thread.request.op = OP_HALT; os_usr1_process(os_getpid()); change_sig(SIGUSR1, 1); } void kill_off_processes_tt(void) { struct task_struct *p; int me; me = os_getpid(); for_each_process(p){ if(p->thread.mode.tt.extern_pid != me) os_kill_process(p->thread.mode.tt.extern_pid, 0); } if(init_task.thread.mode.tt.extern_pid != me) os_kill_process(init_task.thread.mode.tt.extern_pid, 0); } void initial_thread_cb_tt(void (*proc)(void *), void *arg) { if(os_getpid() == tracing_pid){ (*proc)(arg); } else { current->thread.request.op = OP_CB; current->thread.request.u.cb.proc = proc; current->thread.request.u.cb.arg = arg; os_usr1_process(os_getpid()); change_sig(SIGUSR1, 1); change_sig(SIGUSR1, 0); } } int do_proc_op(void *t, int proc_id) { struct task_struct *task; struct thread_struct *thread; int op, pid; task = t; thread = &task->thread; op = thread->request.op; switch(op){ case OP_NONE: case OP_TRACE_ON: break; case OP_EXEC: pid = thread->request.u.exec.pid; do_exec(thread->mode.tt.extern_pid, pid); thread->mode.tt.extern_pid = pid; cpu_tasks[task_thread_info(task)->cpu].pid = pid; break; case OP_FORK: attach_process(thread->request.u.fork.pid); break; case OP_CB: (*thread->request.u.cb.proc)(thread->request.u.cb.arg); break; case OP_REBOOT: case OP_HALT: break; default: tracer_panic("Bad op in do_proc_op"); break; } thread->request.op = OP_NONE; return(op); } void init_idle_tt(void) { default_idle(); } extern void start_kernel(void); static int start_kernel_proc(void *unused) { int pid; block_signals(); pid = os_getpid(); cpu_tasks[0].pid = pid; cpu_tasks[0].task = current; #ifdef CONFIG_SMP cpu_online_map = cpumask_of_cpu(0); #endif if(debug) os_stop_process(pid); start_kernel(); return(0); } void set_tracing(void *task, int tracing) { ((struct task_struct *) task)->thread.mode.tt.tracing = tracing; } int is_tracing(void *t) { return (((struct task_struct *) t)->thread.mode.tt.tracing); } int set_user_mode(void *t) { struct task_struct *task; task = t ? t : current; if(task->thread.mode.tt.tracing) return(1); task->thread.request.op = OP_TRACE_ON; os_usr1_process(os_getpid()); return(0); } void set_init_pid(int pid) { int err; init_task.thread.mode.tt.extern_pid = pid; err = os_pipe(init_task.thread.mode.tt.switch_pipe, 1, 1); if(err) panic("Can't create switch pipe for init_task, errno = %d", -err); } int start_uml_tt(void) { void *sp; int pages; pages = (1 << CONFIG_KERNEL_STACK_ORDER); sp = task_stack_page(&init_task) + pages * PAGE_SIZE - sizeof(unsigned long); return(tracer(start_kernel_proc, sp)); } int external_pid_tt(struct task_struct *task) { return(task->thread.mode.tt.extern_pid); } int thread_pid_tt(struct task_struct *task) { return(task->thread.mode.tt.extern_pid); } int is_valid_pid(int pid) { struct task_struct *task; read_lock(&tasklist_lock); for_each_process(task){ if(task->thread.mode.tt.extern_pid == pid){ read_unlock(&tasklist_lock); return(1); } } read_unlock(&tasklist_lock); return(0); }