/* * Glue Code for SSE2 assembler versions of Serpent Cipher * * Copyright (c) 2011 Jussi Kivilinna * * Glue code based on aesni-intel_glue.c by: * Copyright (C) 2008, Intel Corp. * Author: Huang Ying * * CBC & ECB parts based on code (crypto/cbc.c,ecb.c) by: * Copyright (c) 2006 Herbert Xu * CTR part based on code (crypto/ctr.c) by: * (C) Copyright IBM Corp. 2007 - Joy Latten * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * USA * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct async_serpent_ctx { struct cryptd_ablkcipher *cryptd_tfm; }; static inline bool serpent_fpu_begin(bool fpu_enabled, unsigned int nbytes) { if (fpu_enabled) return true; /* SSE2 is only used when chunk to be processed is large enough, so * do not enable FPU until it is necessary. */ if (nbytes < SERPENT_BLOCK_SIZE * SERPENT_PARALLEL_BLOCKS) return false; kernel_fpu_begin(); return true; } static inline void serpent_fpu_end(bool fpu_enabled) { if (fpu_enabled) kernel_fpu_end(); } static int ecb_crypt(struct blkcipher_desc *desc, struct blkcipher_walk *walk, bool enc) { bool fpu_enabled = false; struct serpent_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); const unsigned int bsize = SERPENT_BLOCK_SIZE; unsigned int nbytes; int err; err = blkcipher_walk_virt(desc, walk); desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; while ((nbytes = walk->nbytes)) { u8 *wsrc = walk->src.virt.addr; u8 *wdst = walk->dst.virt.addr; fpu_enabled = serpent_fpu_begin(fpu_enabled, nbytes); /* Process multi-block batch */ if (nbytes >= bsize * SERPENT_PARALLEL_BLOCKS) { do { if (enc) serpent_enc_blk_xway(ctx, wdst, wsrc); else serpent_dec_blk_xway(ctx, wdst, wsrc); wsrc += bsize * SERPENT_PARALLEL_BLOCKS; wdst += bsize * SERPENT_PARALLEL_BLOCKS; nbytes -= bsize * SERPENT_PARALLEL_BLOCKS; } while (nbytes >= bsize * SERPENT_PARALLEL_BLOCKS); if (nbytes < bsize) goto done; } /* Handle leftovers */ do { if (enc) __serpent_encrypt(ctx, wdst, wsrc); else __serpent_decrypt(ctx, wdst, wsrc); wsrc += bsize; wdst += bsize; nbytes -= bsize; } while (nbytes >= bsize); done: err = blkcipher_walk_done(desc, walk, nbytes); } serpent_fpu_end(fpu_enabled); return err; } static int ecb_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct blkcipher_walk walk; blkcipher_walk_init(&walk, dst, src, nbytes); return ecb_crypt(desc, &walk, true); } static int ecb_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct blkcipher_walk walk; blkcipher_walk_init(&walk, dst, src, nbytes); return ecb_crypt(desc, &walk, false); } static struct crypto_alg blk_ecb_alg = { .cra_name = "__ecb-serpent-sse2", .cra_driver_name = "__driver-ecb-serpent-sse2", .cra_priority = 0, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_blocksize = SERPENT_BLOCK_SIZE, .cra_ctxsize = sizeof(struct serpent_ctx), .cra_alignmask = 0, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_list = LIST_HEAD_INIT(blk_ecb_alg.cra_list), .cra_u = { .blkcipher = { .min_keysize = SERPENT_MIN_KEY_SIZE, .max_keysize = SERPENT_MAX_KEY_SIZE, .setkey = serpent_setkey, .encrypt = ecb_encrypt, .decrypt = ecb_decrypt, }, }, }; static unsigned int __cbc_encrypt(struct blkcipher_desc *desc, struct blkcipher_walk *walk) { struct serpent_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); const unsigned int bsize = SERPENT_BLOCK_SIZE; unsigned int nbytes = walk->nbytes; u128 *src = (u128 *)walk->src.virt.addr; u128 *dst = (u128 *)walk->dst.virt.addr; u128 *iv = (u128 *)walk->iv; do { u128_xor(dst, src, iv); __serpent_encrypt(ctx, (u8 *)dst, (u8 *)dst); iv = dst; src += 1; dst += 1; nbytes -= bsize; } while (nbytes >= bsize); u128_xor((u128 *)walk->iv, (u128 *)walk->iv, iv); return nbytes; } static int cbc_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct blkcipher_walk walk; int err; blkcipher_walk_init(&walk, dst, src, nbytes); err = blkcipher_walk_virt(desc, &walk); while ((nbytes = walk.nbytes)) { nbytes = __cbc_encrypt(desc, &walk); err = blkcipher_walk_done(desc, &walk, nbytes); } return err; } static unsigned int __cbc_decrypt(struct blkcipher_desc *desc, struct blkcipher_walk *walk) { struct serpent_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); const unsigned int bsize = SERPENT_BLOCK_SIZE; unsigned int nbytes = walk->nbytes; u128 *src = (u128 *)walk->src.virt.addr; u128 *dst = (u128 *)walk->dst.virt.addr; u128 ivs[SERPENT_PARALLEL_BLOCKS - 1]; u128 last_iv; int i; /* Start of the last block. */ src += nbytes / bsize - 1; dst += nbytes / bsize - 1; last_iv = *src; /* Process multi-block batch */ if (nbytes >= bsize * SERPENT_PARALLEL_BLOCKS) { do { nbytes -= bsize * (SERPENT_PARALLEL_BLOCKS - 1); src -= SERPENT_PARALLEL_BLOCKS - 1; dst -= SERPENT_PARALLEL_BLOCKS - 1; for (i = 0; i < SERPENT_PARALLEL_BLOCKS - 1; i++) ivs[i] = src[i]; serpent_dec_blk_xway(ctx, (u8 *)dst, (u8 *)src); for (i = 0; i < SERPENT_PARALLEL_BLOCKS - 1; i++) u128_xor(dst + (i + 1), dst + (i + 1), ivs + i); nbytes -= bsize; if (nbytes < bsize) goto done; u128_xor(dst, dst, src - 1); src -= 1; dst -= 1; } while (nbytes >= bsize * SERPENT_PARALLEL_BLOCKS); if (nbytes < bsize) goto done; } /* Handle leftovers */ for (;;) { __serpent_decrypt(ctx, (u8 *)dst, (u8 *)src); nbytes -= bsize; if (nbytes < bsize) break; u128_xor(dst, dst, src - 1); src -= 1; dst -= 1; } done: u128_xor(dst, dst, (u128 *)walk->iv); *(u128 *)walk->iv = last_iv; return nbytes; } static int cbc_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { bool fpu_enabled = false; struct blkcipher_walk walk; int err; blkcipher_walk_init(&walk, dst, src, nbytes); err = blkcipher_walk_virt(desc, &walk); desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; while ((nbytes = walk.nbytes)) { fpu_enabled = serpent_fpu_begin(fpu_enabled, nbytes); nbytes = __cbc_decrypt(desc, &walk); err = blkcipher_walk_done(desc, &walk, nbytes); } serpent_fpu_end(fpu_enabled); return err; } static struct crypto_alg blk_cbc_alg = { .cra_name = "__cbc-serpent-sse2", .cra_driver_name = "__driver-cbc-serpent-sse2", .cra_priority = 0, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_blocksize = SERPENT_BLOCK_SIZE, .cra_ctxsize = sizeof(struct serpent_ctx), .cra_alignmask = 0, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_list = LIST_HEAD_INIT(blk_cbc_alg.cra_list), .cra_u = { .blkcipher = { .min_keysize = SERPENT_MIN_KEY_SIZE, .max_keysize = SERPENT_MAX_KEY_SIZE, .setkey = serpent_setkey, .encrypt = cbc_encrypt, .decrypt = cbc_decrypt, }, }, }; static inline void u128_to_be128(be128 *dst, const u128 *src) { dst->a = cpu_to_be64(src->a); dst->b = cpu_to_be64(src->b); } static inline void be128_to_u128(u128 *dst, const be128 *src) { dst->a = be64_to_cpu(src->a); dst->b = be64_to_cpu(src->b); } static inline void u128_inc(u128 *i) { i->b++; if (!i->b) i->a++; } static void ctr_crypt_final(struct blkcipher_desc *desc, struct blkcipher_walk *walk) { struct serpent_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); u8 *ctrblk = walk->iv; u8 keystream[SERPENT_BLOCK_SIZE]; u8 *src = walk->src.virt.addr; u8 *dst = walk->dst.virt.addr; unsigned int nbytes = walk->nbytes; __serpent_encrypt(ctx, keystream, ctrblk); crypto_xor(keystream, src, nbytes); memcpy(dst, keystream, nbytes); crypto_inc(ctrblk, SERPENT_BLOCK_SIZE); } static unsigned int __ctr_crypt(struct blkcipher_desc *desc, struct blkcipher_walk *walk) { struct serpent_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); const unsigned int bsize = SERPENT_BLOCK_SIZE; unsigned int nbytes = walk->nbytes; u128 *src = (u128 *)walk->src.virt.addr; u128 *dst = (u128 *)walk->dst.virt.addr; u128 ctrblk; be128 ctrblocks[SERPENT_PARALLEL_BLOCKS]; int i; be128_to_u128(&ctrblk, (be128 *)walk->iv); /* Process multi-block batch */ if (nbytes >= bsize * SERPENT_PARALLEL_BLOCKS) { do { /* create ctrblks for parallel encrypt */ for (i = 0; i < SERPENT_PARALLEL_BLOCKS; i++) { if (dst != src) dst[i] = src[i]; u128_to_be128(&ctrblocks[i], &ctrblk); u128_inc(&ctrblk); } serpent_enc_blk_xway_xor(ctx, (u8 *)dst, (u8 *)ctrblocks); src += SERPENT_PARALLEL_BLOCKS; dst += SERPENT_PARALLEL_BLOCKS; nbytes -= bsize * SERPENT_PARALLEL_BLOCKS; } while (nbytes >= bsize * SERPENT_PARALLEL_BLOCKS); if (nbytes < bsize) goto done; } /* Handle leftovers */ do { if (dst != src) *dst = *src; u128_to_be128(&ctrblocks[0], &ctrblk); u128_inc(&ctrblk); __serpent_encrypt(ctx, (u8 *)ctrblocks, (u8 *)ctrblocks); u128_xor(dst, dst, (u128 *)ctrblocks); src += 1; dst += 1; nbytes -= bsize; } while (nbytes >= bsize); done: u128_to_be128((be128 *)walk->iv, &ctrblk); return nbytes; } static int ctr_crypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { bool fpu_enabled = false; struct blkcipher_walk walk; int err; blkcipher_walk_init(&walk, dst, src, nbytes); err = blkcipher_walk_virt_block(desc, &walk, SERPENT_BLOCK_SIZE); desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; while ((nbytes = walk.nbytes) >= SERPENT_BLOCK_SIZE) { fpu_enabled = serpent_fpu_begin(fpu_enabled, nbytes); nbytes = __ctr_crypt(desc, &walk); err = blkcipher_walk_done(desc, &walk, nbytes); } serpent_fpu_end(fpu_enabled); if (walk.nbytes) { ctr_crypt_final(desc, &walk); err = blkcipher_walk_done(desc, &walk, 0); } return err; } static struct crypto_alg blk_ctr_alg = { .cra_name = "__ctr-serpent-sse2", .cra_driver_name = "__driver-ctr-serpent-sse2", .cra_priority = 0, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct serpent_ctx), .cra_alignmask = 0, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_list = LIST_HEAD_INIT(blk_ctr_alg.cra_list), .cra_u = { .blkcipher = { .min_keysize = SERPENT_MIN_KEY_SIZE, .max_keysize = SERPENT_MAX_KEY_SIZE, .ivsize = SERPENT_BLOCK_SIZE, .setkey = serpent_setkey, .encrypt = ctr_crypt, .decrypt = ctr_crypt, }, }, }; struct crypt_priv { struct serpent_ctx *ctx; bool fpu_enabled; }; static void encrypt_callback(void *priv, u8 *srcdst, unsigned int nbytes) { const unsigned int bsize = SERPENT_BLOCK_SIZE; struct crypt_priv *ctx = priv; int i; ctx->fpu_enabled = serpent_fpu_begin(ctx->fpu_enabled, nbytes); if (nbytes == bsize * SERPENT_PARALLEL_BLOCKS) { serpent_enc_blk_xway(ctx->ctx, srcdst, srcdst); return; } for (i = 0; i < nbytes / bsize; i++, srcdst += bsize) __serpent_encrypt(ctx->ctx, srcdst, srcdst); } static void decrypt_callback(void *priv, u8 *srcdst, unsigned int nbytes) { const unsigned int bsize = SERPENT_BLOCK_SIZE; struct crypt_priv *ctx = priv; int i; ctx->fpu_enabled = serpent_fpu_begin(ctx->fpu_enabled, nbytes); if (nbytes == bsize * SERPENT_PARALLEL_BLOCKS) { serpent_dec_blk_xway(ctx->ctx, srcdst, srcdst); return; } for (i = 0; i < nbytes / bsize; i++, srcdst += bsize) __serpent_decrypt(ctx->ctx, srcdst, srcdst); } struct serpent_lrw_ctx { struct lrw_table_ctx lrw_table; struct serpent_ctx serpent_ctx; }; static int lrw_serpent_setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen) { struct serpent_lrw_ctx *ctx = crypto_tfm_ctx(tfm); int err; err = __serpent_setkey(&ctx->serpent_ctx, key, keylen - SERPENT_BLOCK_SIZE); if (err) return err; return lrw_init_table(&ctx->lrw_table, key + keylen - SERPENT_BLOCK_SIZE); } static int lrw_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct serpent_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); be128 buf[SERPENT_PARALLEL_BLOCKS]; struct crypt_priv crypt_ctx = { .ctx = &ctx->serpent_ctx, .fpu_enabled = false, }; struct lrw_crypt_req req = { .tbuf = buf, .tbuflen = sizeof(buf), .table_ctx = &ctx->lrw_table, .crypt_ctx = &crypt_ctx, .crypt_fn = encrypt_callback, }; int ret; desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; ret = lrw_crypt(desc, dst, src, nbytes, &req); serpent_fpu_end(crypt_ctx.fpu_enabled); return ret; } static int lrw_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct serpent_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); be128 buf[SERPENT_PARALLEL_BLOCKS]; struct crypt_priv crypt_ctx = { .ctx = &ctx->serpent_ctx, .fpu_enabled = false, }; struct lrw_crypt_req req = { .tbuf = buf, .tbuflen = sizeof(buf), .table_ctx = &ctx->lrw_table, .crypt_ctx = &crypt_ctx, .crypt_fn = decrypt_callback, }; int ret; desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; ret = lrw_crypt(desc, dst, src, nbytes, &req); serpent_fpu_end(crypt_ctx.fpu_enabled); return ret; } static void lrw_exit_tfm(struct crypto_tfm *tfm) { struct serpent_lrw_ctx *ctx = crypto_tfm_ctx(tfm); lrw_free_table(&ctx->lrw_table); } static struct crypto_alg blk_lrw_alg = { .cra_name = "__lrw-serpent-sse2", .cra_driver_name = "__driver-lrw-serpent-sse2", .cra_priority = 0, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_blocksize = SERPENT_BLOCK_SIZE, .cra_ctxsize = sizeof(struct serpent_lrw_ctx), .cra_alignmask = 0, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_list = LIST_HEAD_INIT(blk_lrw_alg.cra_list), .cra_exit = lrw_exit_tfm, .cra_u = { .blkcipher = { .min_keysize = SERPENT_MIN_KEY_SIZE + SERPENT_BLOCK_SIZE, .max_keysize = SERPENT_MAX_KEY_SIZE + SERPENT_BLOCK_SIZE, .ivsize = SERPENT_BLOCK_SIZE, .setkey = lrw_serpent_setkey, .encrypt = lrw_encrypt, .decrypt = lrw_decrypt, }, }, }; struct serpent_xts_ctx { struct serpent_ctx tweak_ctx; struct serpent_ctx crypt_ctx; }; static int xts_serpent_setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen) { struct serpent_xts_ctx *ctx = crypto_tfm_ctx(tfm); u32 *flags = &tfm->crt_flags; int err; /* key consists of keys of equal size concatenated, therefore * the length must be even */ if (keylen % 2) { *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; return -EINVAL; } /* first half of xts-key is for crypt */ err = __serpent_setkey(&ctx->crypt_ctx, key, keylen / 2); if (err) return err; /* second half of xts-key is for tweak */ return __serpent_setkey(&ctx->tweak_ctx, key + keylen / 2, keylen / 2); } static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct serpent_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); be128 buf[SERPENT_PARALLEL_BLOCKS]; struct crypt_priv crypt_ctx = { .ctx = &ctx->crypt_ctx, .fpu_enabled = false, }; struct xts_crypt_req req = { .tbuf = buf, .tbuflen = sizeof(buf), .tweak_ctx = &ctx->tweak_ctx, .tweak_fn = XTS_TWEAK_CAST(__serpent_encrypt), .crypt_ctx = &crypt_ctx, .crypt_fn = encrypt_callback, }; int ret; desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; ret = xts_crypt(desc, dst, src, nbytes, &req); serpent_fpu_end(crypt_ctx.fpu_enabled); return ret; } static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct serpent_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); be128 buf[SERPENT_PARALLEL_BLOCKS]; struct crypt_priv crypt_ctx = { .ctx = &ctx->crypt_ctx, .fpu_enabled = false, }; struct xts_crypt_req req = { .tbuf = buf, .tbuflen = sizeof(buf), .tweak_ctx = &ctx->tweak_ctx, .tweak_fn = XTS_TWEAK_CAST(__serpent_encrypt), .crypt_ctx = &crypt_ctx, .crypt_fn = decrypt_callback, }; int ret; desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; ret = xts_crypt(desc, dst, src, nbytes, &req); serpent_fpu_end(crypt_ctx.fpu_enabled); return ret; } static struct crypto_alg blk_xts_alg = { .cra_name = "__xts-serpent-sse2", .cra_driver_name = "__driver-xts-serpent-sse2", .cra_priority = 0, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_blocksize = SERPENT_BLOCK_SIZE, .cra_ctxsize = sizeof(struct serpent_xts_ctx), .cra_alignmask = 0, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_list = LIST_HEAD_INIT(blk_xts_alg.cra_list), .cra_u = { .blkcipher = { .min_keysize = SERPENT_MIN_KEY_SIZE * 2, .max_keysize = SERPENT_MAX_KEY_SIZE * 2, .ivsize = SERPENT_BLOCK_SIZE, .setkey = xts_serpent_setkey, .encrypt = xts_encrypt, .decrypt = xts_decrypt, }, }, }; static int ablk_set_key(struct crypto_ablkcipher *tfm, const u8 *key, unsigned int key_len) { struct async_serpent_ctx *ctx = crypto_ablkcipher_ctx(tfm); struct crypto_ablkcipher *child = &ctx->cryptd_tfm->base; int err; crypto_ablkcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); crypto_ablkcipher_set_flags(child, crypto_ablkcipher_get_flags(tfm) & CRYPTO_TFM_REQ_MASK); err = crypto_ablkcipher_setkey(child, key, key_len); crypto_ablkcipher_set_flags(tfm, crypto_ablkcipher_get_flags(child) & CRYPTO_TFM_RES_MASK); return err; } static int __ablk_encrypt(struct ablkcipher_request *req) { struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req); struct async_serpent_ctx *ctx = crypto_ablkcipher_ctx(tfm); struct blkcipher_desc desc; desc.tfm = cryptd_ablkcipher_child(ctx->cryptd_tfm); desc.info = req->info; desc.flags = 0; return crypto_blkcipher_crt(desc.tfm)->encrypt( &desc, req->dst, req->src, req->nbytes); } static int ablk_encrypt(struct ablkcipher_request *req) { struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req); struct async_serpent_ctx *ctx = crypto_ablkcipher_ctx(tfm); if (!irq_fpu_usable()) { struct ablkcipher_request *cryptd_req = ablkcipher_request_ctx(req); memcpy(cryptd_req, req, sizeof(*req)); ablkcipher_request_set_tfm(cryptd_req, &ctx->cryptd_tfm->base); return crypto_ablkcipher_encrypt(cryptd_req); } else { return __ablk_encrypt(req); } } static int ablk_decrypt(struct ablkcipher_request *req) { struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req); struct async_serpent_ctx *ctx = crypto_ablkcipher_ctx(tfm); if (!irq_fpu_usable()) { struct ablkcipher_request *cryptd_req = ablkcipher_request_ctx(req); memcpy(cryptd_req, req, sizeof(*req)); ablkcipher_request_set_tfm(cryptd_req, &ctx->cryptd_tfm->base); return crypto_ablkcipher_decrypt(cryptd_req); } else { struct blkcipher_desc desc; desc.tfm = cryptd_ablkcipher_child(ctx->cryptd_tfm); desc.info = req->info; desc.flags = 0; return crypto_blkcipher_crt(desc.tfm)->decrypt( &desc, req->dst, req->src, req->nbytes); } } static void ablk_exit(struct crypto_tfm *tfm) { struct async_serpent_ctx *ctx = crypto_tfm_ctx(tfm); cryptd_free_ablkcipher(ctx->cryptd_tfm); } static void ablk_init_common(struct crypto_tfm *tfm, struct cryptd_ablkcipher *cryptd_tfm) { struct async_serpent_ctx *ctx = crypto_tfm_ctx(tfm); ctx->cryptd_tfm = cryptd_tfm; tfm->crt_ablkcipher.reqsize = sizeof(struct ablkcipher_request) + crypto_ablkcipher_reqsize(&cryptd_tfm->base); } static int ablk_ecb_init(struct crypto_tfm *tfm) { struct cryptd_ablkcipher *cryptd_tfm; cryptd_tfm = cryptd_alloc_ablkcipher("__driver-ecb-serpent-sse2", 0, 0); if (IS_ERR(cryptd_tfm)) return PTR_ERR(cryptd_tfm); ablk_init_common(tfm, cryptd_tfm); return 0; } static struct crypto_alg ablk_ecb_alg = { .cra_name = "ecb(serpent)", .cra_driver_name = "ecb-serpent-sse2", .cra_priority = 400, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = SERPENT_BLOCK_SIZE, .cra_ctxsize = sizeof(struct async_serpent_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_list = LIST_HEAD_INIT(ablk_ecb_alg.cra_list), .cra_init = ablk_ecb_init, .cra_exit = ablk_exit, .cra_u = { .ablkcipher = { .min_keysize = SERPENT_MIN_KEY_SIZE, .max_keysize = SERPENT_MAX_KEY_SIZE, .setkey = ablk_set_key, .encrypt = ablk_encrypt, .decrypt = ablk_decrypt, }, }, }; static int ablk_cbc_init(struct crypto_tfm *tfm) { struct cryptd_ablkcipher *cryptd_tfm; cryptd_tfm = cryptd_alloc_ablkcipher("__driver-cbc-serpent-sse2", 0, 0); if (IS_ERR(cryptd_tfm)) return PTR_ERR(cryptd_tfm); ablk_init_common(tfm, cryptd_tfm); return 0; } static struct crypto_alg ablk_cbc_alg = { .cra_name = "cbc(serpent)", .cra_driver_name = "cbc-serpent-sse2", .cra_priority = 400, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = SERPENT_BLOCK_SIZE, .cra_ctxsize = sizeof(struct async_serpent_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_list = LIST_HEAD_INIT(ablk_cbc_alg.cra_list), .cra_init = ablk_cbc_init, .cra_exit = ablk_exit, .cra_u = { .ablkcipher = { .min_keysize = SERPENT_MIN_KEY_SIZE, .max_keysize = SERPENT_MAX_KEY_SIZE, .ivsize = SERPENT_BLOCK_SIZE, .setkey = ablk_set_key, .encrypt = __ablk_encrypt, .decrypt = ablk_decrypt, }, }, }; static int ablk_ctr_init(struct crypto_tfm *tfm) { struct cryptd_ablkcipher *cryptd_tfm; cryptd_tfm = cryptd_alloc_ablkcipher("__driver-ctr-serpent-sse2", 0, 0); if (IS_ERR(cryptd_tfm)) return PTR_ERR(cryptd_tfm); ablk_init_common(tfm, cryptd_tfm); return 0; } static struct crypto_alg ablk_ctr_alg = { .cra_name = "ctr(serpent)", .cra_driver_name = "ctr-serpent-sse2", .cra_priority = 400, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct async_serpent_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_list = LIST_HEAD_INIT(ablk_ctr_alg.cra_list), .cra_init = ablk_ctr_init, .cra_exit = ablk_exit, .cra_u = { .ablkcipher = { .min_keysize = SERPENT_MIN_KEY_SIZE, .max_keysize = SERPENT_MAX_KEY_SIZE, .ivsize = SERPENT_BLOCK_SIZE, .setkey = ablk_set_key, .encrypt = ablk_encrypt, .decrypt = ablk_encrypt, .geniv = "chainiv", }, }, }; static int ablk_lrw_init(struct crypto_tfm *tfm) { struct cryptd_ablkcipher *cryptd_tfm; cryptd_tfm = cryptd_alloc_ablkcipher("__driver-lrw-serpent-sse2", 0, 0); if (IS_ERR(cryptd_tfm)) return PTR_ERR(cryptd_tfm); ablk_init_common(tfm, cryptd_tfm); return 0; } static struct crypto_alg ablk_lrw_alg = { .cra_name = "lrw(serpent)", .cra_driver_name = "lrw-serpent-sse2", .cra_priority = 400, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = SERPENT_BLOCK_SIZE, .cra_ctxsize = sizeof(struct async_serpent_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_list = LIST_HEAD_INIT(ablk_lrw_alg.cra_list), .cra_init = ablk_lrw_init, .cra_exit = ablk_exit, .cra_u = { .ablkcipher = { .min_keysize = SERPENT_MIN_KEY_SIZE + SERPENT_BLOCK_SIZE, .max_keysize = SERPENT_MAX_KEY_SIZE + SERPENT_BLOCK_SIZE, .ivsize = SERPENT_BLOCK_SIZE, .setkey = ablk_set_key, .encrypt = ablk_encrypt, .decrypt = ablk_decrypt, }, }, }; static int ablk_xts_init(struct crypto_tfm *tfm) { struct cryptd_ablkcipher *cryptd_tfm; cryptd_tfm = cryptd_alloc_ablkcipher("__driver-xts-serpent-sse2", 0, 0); if (IS_ERR(cryptd_tfm)) return PTR_ERR(cryptd_tfm); ablk_init_common(tfm, cryptd_tfm); return 0; } static struct crypto_alg ablk_xts_alg = { .cra_name = "xts(serpent)", .cra_driver_name = "xts-serpent-sse2", .cra_priority = 400, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = SERPENT_BLOCK_SIZE, .cra_ctxsize = sizeof(struct async_serpent_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_list = LIST_HEAD_INIT(ablk_xts_alg.cra_list), .cra_init = ablk_xts_init, .cra_exit = ablk_exit, .cra_u = { .ablkcipher = { .min_keysize = SERPENT_MIN_KEY_SIZE * 2, .max_keysize = SERPENT_MAX_KEY_SIZE * 2, .ivsize = SERPENT_BLOCK_SIZE, .setkey = ablk_set_key, .encrypt = ablk_encrypt, .decrypt = ablk_decrypt, }, }, }; static int __init serpent_sse2_init(void) { int err; if (!cpu_has_xmm2) { printk(KERN_INFO "SSE2 instructions are not detected.\n"); return -ENODEV; } err = crypto_register_alg(&blk_ecb_alg); if (err) goto blk_ecb_err; err = crypto_register_alg(&blk_cbc_alg); if (err) goto blk_cbc_err; err = crypto_register_alg(&blk_ctr_alg); if (err) goto blk_ctr_err; err = crypto_register_alg(&ablk_ecb_alg); if (err) goto ablk_ecb_err; err = crypto_register_alg(&ablk_cbc_alg); if (err) goto ablk_cbc_err; err = crypto_register_alg(&ablk_ctr_alg); if (err) goto ablk_ctr_err; err = crypto_register_alg(&blk_lrw_alg); if (err) goto blk_lrw_err; err = crypto_register_alg(&ablk_lrw_alg); if (err) goto ablk_lrw_err; err = crypto_register_alg(&blk_xts_alg); if (err) goto blk_xts_err; err = crypto_register_alg(&ablk_xts_alg); if (err) goto ablk_xts_err; return err; crypto_unregister_alg(&ablk_xts_alg); ablk_xts_err: crypto_unregister_alg(&blk_xts_alg); blk_xts_err: crypto_unregister_alg(&ablk_lrw_alg); ablk_lrw_err: crypto_unregister_alg(&blk_lrw_alg); blk_lrw_err: crypto_unregister_alg(&ablk_ctr_alg); ablk_ctr_err: crypto_unregister_alg(&ablk_cbc_alg); ablk_cbc_err: crypto_unregister_alg(&ablk_ecb_alg); ablk_ecb_err: crypto_unregister_alg(&blk_ctr_alg); blk_ctr_err: crypto_unregister_alg(&blk_cbc_alg); blk_cbc_err: crypto_unregister_alg(&blk_ecb_alg); blk_ecb_err: return err; } static void __exit serpent_sse2_exit(void) { crypto_unregister_alg(&ablk_xts_alg); crypto_unregister_alg(&blk_xts_alg); crypto_unregister_alg(&ablk_lrw_alg); crypto_unregister_alg(&blk_lrw_alg); crypto_unregister_alg(&ablk_ctr_alg); crypto_unregister_alg(&ablk_cbc_alg); crypto_unregister_alg(&ablk_ecb_alg); crypto_unregister_alg(&blk_ctr_alg); crypto_unregister_alg(&blk_cbc_alg); crypto_unregister_alg(&blk_ecb_alg); } module_init(serpent_sse2_init); module_exit(serpent_sse2_exit); MODULE_DESCRIPTION("Serpent Cipher Algorithm, SSE2 optimized"); MODULE_LICENSE("GPL"); MODULE_ALIAS("serpent");