/* * Copyright (C) 2013 Advanced Micro Devices, Inc. * * Author: Jacob Shin * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #define NUM_COUNTERS_NB 4 #define NUM_COUNTERS_L2 4 #define MAX_COUNTERS NUM_COUNTERS_NB #define RDPMC_BASE_NB 6 #define RDPMC_BASE_L2 10 #define COUNTER_SHIFT 16 struct amd_uncore { int id; int refcnt; int cpu; int num_counters; int rdpmc_base; u32 msr_base; cpumask_t *active_mask; struct pmu *pmu; struct perf_event *events[MAX_COUNTERS]; struct amd_uncore *free_when_cpu_online; }; static struct amd_uncore * __percpu *amd_uncore_nb; static struct amd_uncore * __percpu *amd_uncore_l2; static struct pmu amd_nb_pmu; static struct pmu amd_l2_pmu; static cpumask_t amd_nb_active_mask; static cpumask_t amd_l2_active_mask; static bool is_nb_event(struct perf_event *event) { return event->pmu->type == amd_nb_pmu.type; } static bool is_l2_event(struct perf_event *event) { return event->pmu->type == amd_l2_pmu.type; } static struct amd_uncore *event_to_amd_uncore(struct perf_event *event) { if (is_nb_event(event) && amd_uncore_nb) return *per_cpu_ptr(amd_uncore_nb, event->cpu); else if (is_l2_event(event) && amd_uncore_l2) return *per_cpu_ptr(amd_uncore_l2, event->cpu); return NULL; } static void amd_uncore_read(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; u64 prev, new; s64 delta; /* * since we do not enable counter overflow interrupts, * we do not have to worry about prev_count changing on us */ prev = local64_read(&hwc->prev_count); rdpmcl(hwc->event_base_rdpmc, new); local64_set(&hwc->prev_count, new); delta = (new << COUNTER_SHIFT) - (prev << COUNTER_SHIFT); delta >>= COUNTER_SHIFT; local64_add(delta, &event->count); } static void amd_uncore_start(struct perf_event *event, int flags) { struct hw_perf_event *hwc = &event->hw; if (flags & PERF_EF_RELOAD) wrmsrl(hwc->event_base, (u64)local64_read(&hwc->prev_count)); hwc->state = 0; wrmsrl(hwc->config_base, (hwc->config | ARCH_PERFMON_EVENTSEL_ENABLE)); perf_event_update_userpage(event); } static void amd_uncore_stop(struct perf_event *event, int flags) { struct hw_perf_event *hwc = &event->hw; wrmsrl(hwc->config_base, hwc->config); hwc->state |= PERF_HES_STOPPED; if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) { amd_uncore_read(event); hwc->state |= PERF_HES_UPTODATE; } } static int amd_uncore_add(struct perf_event *event, int flags) { int i; struct amd_uncore *uncore = event_to_amd_uncore(event); struct hw_perf_event *hwc = &event->hw; /* are we already assigned? */ if (hwc->idx != -1 && uncore->events[hwc->idx] == event) goto out; for (i = 0; i < uncore->num_counters; i++) { if (uncore->events[i] == event) { hwc->idx = i; goto out; } } /* if not, take the first available counter */ hwc->idx = -1; for (i = 0; i < uncore->num_counters; i++) { if (cmpxchg(&uncore->events[i], NULL, event) == NULL) { hwc->idx = i; break; } } out: if (hwc->idx == -1) return -EBUSY; hwc->config_base = uncore->msr_base + (2 * hwc->idx); hwc->event_base = uncore->msr_base + 1 + (2 * hwc->idx); hwc->event_base_rdpmc = uncore->rdpmc_base + hwc->idx; hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; if (flags & PERF_EF_START) amd_uncore_start(event, PERF_EF_RELOAD); return 0; } static void amd_uncore_del(struct perf_event *event, int flags) { int i; struct amd_uncore *uncore = event_to_amd_uncore(event); struct hw_perf_event *hwc = &event->hw; amd_uncore_stop(event, PERF_EF_UPDATE); for (i = 0; i < uncore->num_counters; i++) { if (cmpxchg(&uncore->events[i], event, NULL) == event) break; } hwc->idx = -1; } static int amd_uncore_event_init(struct perf_event *event) { struct amd_uncore *uncore; struct hw_perf_event *hwc = &event->hw; if (event->attr.type != event->pmu->type) return -ENOENT; /* * NB and L2 counters (MSRs) are shared across all cores that share the * same NB / L2 cache. Interrupts can be directed to a single target * core, however, event counts generated by processes running on other * cores cannot be masked out. So we do not support sampling and * per-thread events. */ if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK) return -EINVAL; /* NB and L2 counters do not have usr/os/guest/host bits */ if (event->attr.exclude_user || event->attr.exclude_kernel || event->attr.exclude_host || event->attr.exclude_guest) return -EINVAL; /* and we do not enable counter overflow interrupts */ hwc->config = event->attr.config & AMD64_RAW_EVENT_MASK_NB; hwc->idx = -1; if (event->cpu < 0) return -EINVAL; uncore = event_to_amd_uncore(event); if (!uncore) return -ENODEV; /* * since request can come in to any of the shared cores, we will remap * to a single common cpu. */ event->cpu = uncore->cpu; return 0; } static ssize_t amd_uncore_attr_show_cpumask(struct device *dev, struct device_attribute *attr, char *buf) { cpumask_t *active_mask; struct pmu *pmu = dev_get_drvdata(dev); if (pmu->type == amd_nb_pmu.type) active_mask = &amd_nb_active_mask; else if (pmu->type == amd_l2_pmu.type) active_mask = &amd_l2_active_mask; else return 0; return cpumap_print_to_pagebuf(true, buf, active_mask); } static DEVICE_ATTR(cpumask, S_IRUGO, amd_uncore_attr_show_cpumask, NULL); static struct attribute *amd_uncore_attrs[] = { &dev_attr_cpumask.attr, NULL, }; static struct attribute_group amd_uncore_attr_group = { .attrs = amd_uncore_attrs, }; PMU_FORMAT_ATTR(event, "config:0-7,32-35"); PMU_FORMAT_ATTR(umask, "config:8-15"); static struct attribute *amd_uncore_format_attr[] = { &format_attr_event.attr, &format_attr_umask.attr, NULL, }; static struct attribute_group amd_uncore_format_group = { .name = "format", .attrs = amd_uncore_format_attr, }; static const struct attribute_group *amd_uncore_attr_groups[] = { &amd_uncore_attr_group, &amd_uncore_format_group, NULL, }; static struct pmu amd_nb_pmu = { .task_ctx_nr = perf_invalid_context, .attr_groups = amd_uncore_attr_groups, .name = "amd_nb", .event_init = amd_uncore_event_init, .add = amd_uncore_add, .del = amd_uncore_del, .start = amd_uncore_start, .stop = amd_uncore_stop, .read = amd_uncore_read, }; static struct pmu amd_l2_pmu = { .task_ctx_nr = perf_invalid_context, .attr_groups = amd_uncore_attr_groups, .name = "amd_l2", .event_init = amd_uncore_event_init, .add = amd_uncore_add, .del = amd_uncore_del, .start = amd_uncore_start, .stop = amd_uncore_stop, .read = amd_uncore_read, }; static struct amd_uncore *amd_uncore_alloc(unsigned int cpu) { return kzalloc_node(sizeof(struct amd_uncore), GFP_KERNEL, cpu_to_node(cpu)); } static int amd_uncore_cpu_up_prepare(unsigned int cpu) { struct amd_uncore *uncore_nb = NULL, *uncore_l2; if (amd_uncore_nb) { uncore_nb = amd_uncore_alloc(cpu); if (!uncore_nb) goto fail; uncore_nb->cpu = cpu; uncore_nb->num_counters = NUM_COUNTERS_NB; uncore_nb->rdpmc_base = RDPMC_BASE_NB; uncore_nb->msr_base = MSR_F15H_NB_PERF_CTL; uncore_nb->active_mask = &amd_nb_active_mask; uncore_nb->pmu = &amd_nb_pmu; *per_cpu_ptr(amd_uncore_nb, cpu) = uncore_nb; } if (amd_uncore_l2) { uncore_l2 = amd_uncore_alloc(cpu); if (!uncore_l2) goto fail; uncore_l2->cpu = cpu; uncore_l2->num_counters = NUM_COUNTERS_L2; uncore_l2->rdpmc_base = RDPMC_BASE_L2; uncore_l2->msr_base = MSR_F16H_L2I_PERF_CTL; uncore_l2->active_mask = &amd_l2_active_mask; uncore_l2->pmu = &amd_l2_pmu; *per_cpu_ptr(amd_uncore_l2, cpu) = uncore_l2; } return 0; fail: if (amd_uncore_nb) *per_cpu_ptr(amd_uncore_nb, cpu) = NULL; kfree(uncore_nb); return -ENOMEM; } static struct amd_uncore * amd_uncore_find_online_sibling(struct amd_uncore *this, struct amd_uncore * __percpu *uncores) { unsigned int cpu; struct amd_uncore *that; for_each_online_cpu(cpu) { that = *per_cpu_ptr(uncores, cpu); if (!that) continue; if (this == that) continue; if (this->id == that->id) { that->free_when_cpu_online = this; this = that; break; } } this->refcnt++; return this; } static int amd_uncore_cpu_starting(unsigned int cpu) { unsigned int eax, ebx, ecx, edx; struct amd_uncore *uncore; if (amd_uncore_nb) { uncore = *per_cpu_ptr(amd_uncore_nb, cpu); cpuid(0x8000001e, &eax, &ebx, &ecx, &edx); uncore->id = ecx & 0xff; uncore = amd_uncore_find_online_sibling(uncore, amd_uncore_nb); *per_cpu_ptr(amd_uncore_nb, cpu) = uncore; } if (amd_uncore_l2) { unsigned int apicid = cpu_data(cpu).apicid; unsigned int nshared; uncore = *per_cpu_ptr(amd_uncore_l2, cpu); cpuid_count(0x8000001d, 2, &eax, &ebx, &ecx, &edx); nshared = ((eax >> 14) & 0xfff) + 1; uncore->id = apicid - (apicid % nshared); uncore = amd_uncore_find_online_sibling(uncore, amd_uncore_l2); *per_cpu_ptr(amd_uncore_l2, cpu) = uncore; } return 0; } static void uncore_online(unsigned int cpu, struct amd_uncore * __percpu *uncores) { struct amd_uncore *uncore = *per_cpu_ptr(uncores, cpu); kfree(uncore->free_when_cpu_online); uncore->free_when_cpu_online = NULL; if (cpu == uncore->cpu) cpumask_set_cpu(cpu, uncore->active_mask); } static int amd_uncore_cpu_online(unsigned int cpu) { if (amd_uncore_nb) uncore_online(cpu, amd_uncore_nb); if (amd_uncore_l2) uncore_online(cpu, amd_uncore_l2); return 0; } static void uncore_down_prepare(unsigned int cpu, struct amd_uncore * __percpu *uncores) { unsigned int i; struct amd_uncore *this = *per_cpu_ptr(uncores, cpu); if (this->cpu != cpu) return; /* this cpu is going down, migrate to a shared sibling if possible */ for_each_online_cpu(i) { struct amd_uncore *that = *per_cpu_ptr(uncores, i); if (cpu == i) continue; if (this == that) { perf_pmu_migrate_context(this->pmu, cpu, i); cpumask_clear_cpu(cpu, that->active_mask); cpumask_set_cpu(i, that->active_mask); that->cpu = i; break; } } } static int amd_uncore_cpu_down_prepare(unsigned int cpu) { if (amd_uncore_nb) uncore_down_prepare(cpu, amd_uncore_nb); if (amd_uncore_l2) uncore_down_prepare(cpu, amd_uncore_l2); return 0; } static void uncore_dead(unsigned int cpu, struct amd_uncore * __percpu *uncores) { struct amd_uncore *uncore = *per_cpu_ptr(uncores, cpu); if (cpu == uncore->cpu) cpumask_clear_cpu(cpu, uncore->active_mask); if (!--uncore->refcnt) kfree(uncore); *per_cpu_ptr(uncores, cpu) = NULL; } static int amd_uncore_cpu_dead(unsigned int cpu) { if (amd_uncore_nb) uncore_dead(cpu, amd_uncore_nb); if (amd_uncore_l2) uncore_dead(cpu, amd_uncore_l2); return 0; } static int __init amd_uncore_init(void) { int ret = -ENODEV; if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) goto fail_nodev; if (!boot_cpu_has(X86_FEATURE_TOPOEXT)) goto fail_nodev; if (boot_cpu_has(X86_FEATURE_PERFCTR_NB)) { amd_uncore_nb = alloc_percpu(struct amd_uncore *); if (!amd_uncore_nb) { ret = -ENOMEM; goto fail_nb; } ret = perf_pmu_register(&amd_nb_pmu, amd_nb_pmu.name, -1); if (ret) goto fail_nb; pr_info("perf: AMD NB counters detected\n"); ret = 0; } if (boot_cpu_has(X86_FEATURE_PERFCTR_L2)) { amd_uncore_l2 = alloc_percpu(struct amd_uncore *); if (!amd_uncore_l2) { ret = -ENOMEM; goto fail_l2; } ret = perf_pmu_register(&amd_l2_pmu, amd_l2_pmu.name, -1); if (ret) goto fail_l2; pr_info("perf: AMD L2I counters detected\n"); ret = 0; } /* * Install callbacks. Core will call them for each online cpu. */ if (cpuhp_setup_state(CPUHP_PERF_X86_AMD_UNCORE_PREP, "PERF_X86_AMD_UNCORE_PREP", amd_uncore_cpu_up_prepare, amd_uncore_cpu_dead)) goto fail_l2; if (cpuhp_setup_state(CPUHP_AP_PERF_X86_AMD_UNCORE_STARTING, "AP_PERF_X86_AMD_UNCORE_STARTING", amd_uncore_cpu_starting, NULL)) goto fail_prep; if (cpuhp_setup_state(CPUHP_AP_PERF_X86_AMD_UNCORE_ONLINE, "AP_PERF_X86_AMD_UNCORE_ONLINE", amd_uncore_cpu_online, amd_uncore_cpu_down_prepare)) goto fail_start; return 0; fail_start: cpuhp_remove_state(CPUHP_AP_PERF_X86_AMD_UNCORE_STARTING); fail_prep: cpuhp_remove_state(CPUHP_PERF_X86_AMD_UNCORE_PREP); fail_l2: if (boot_cpu_has(X86_FEATURE_PERFCTR_NB)) perf_pmu_unregister(&amd_nb_pmu); if (amd_uncore_l2) free_percpu(amd_uncore_l2); fail_nb: if (amd_uncore_nb) free_percpu(amd_uncore_nb); fail_nodev: return ret; } device_initcall(amd_uncore_init);