/* * perf_event_intel_rapl.c: support Intel RAPL energy consumption counters * Copyright (C) 2013 Google, Inc., Stephane Eranian * * Intel RAPL interface is specified in the IA-32 Manual Vol3b * section 14.7.1 (September 2013) * * RAPL provides more controls than just reporting energy consumption * however here we only expose the 3 energy consumption free running * counters (pp0, pkg, dram). * * Each of those counters increments in a power unit defined by the * RAPL_POWER_UNIT MSR. On SandyBridge, this unit is 1/(2^16) Joules * but it can vary. * * Counter to rapl events mappings: * * pp0 counter: consumption of all physical cores (power plane 0) * event: rapl_energy_cores * perf code: 0x1 * * pkg counter: consumption of the whole processor package * event: rapl_energy_pkg * perf code: 0x2 * * dram counter: consumption of the dram domain (servers only) * event: rapl_energy_dram * perf code: 0x3 * * gpu counter: consumption of the builtin-gpu domain (client only) * event: rapl_energy_gpu * perf code: 0x4 * * psys counter: consumption of the builtin-psys domain (client only) * event: rapl_energy_psys * perf code: 0x5 * * We manage those counters as free running (read-only). They may be * use simultaneously by other tools, such as turbostat. * * The events only support system-wide mode counting. There is no * sampling support because it does not make sense and is not * supported by the RAPL hardware. * * Because we want to avoid floating-point operations in the kernel, * the events are all reported in fixed point arithmetic (32.32). * Tools must adjust the counts to convert them to Watts using * the duration of the measurement. Tools may use a function such as * ldexp(raw_count, -32); */ #define pr_fmt(fmt) "RAPL PMU: " fmt #include #include #include #include #include #include "../perf_event.h" MODULE_LICENSE("GPL"); /* * RAPL energy status counters */ #define RAPL_IDX_PP0_NRG_STAT 0 /* all cores */ #define INTEL_RAPL_PP0 0x1 /* pseudo-encoding */ #define RAPL_IDX_PKG_NRG_STAT 1 /* entire package */ #define INTEL_RAPL_PKG 0x2 /* pseudo-encoding */ #define RAPL_IDX_RAM_NRG_STAT 2 /* DRAM */ #define INTEL_RAPL_RAM 0x3 /* pseudo-encoding */ #define RAPL_IDX_PP1_NRG_STAT 3 /* gpu */ #define INTEL_RAPL_PP1 0x4 /* pseudo-encoding */ #define RAPL_IDX_PSYS_NRG_STAT 4 /* psys */ #define INTEL_RAPL_PSYS 0x5 /* pseudo-encoding */ #define NR_RAPL_DOMAINS 0x5 static const char *const rapl_domain_names[NR_RAPL_DOMAINS] __initconst = { "pp0-core", "package", "dram", "pp1-gpu", "psys", }; /* Clients have PP0, PKG */ #define RAPL_IDX_CLN (1<config * any other bit is reserved */ #define RAPL_EVENT_MASK 0xFFULL #define DEFINE_RAPL_FORMAT_ATTR(_var, _name, _format) \ static ssize_t __rapl_##_var##_show(struct kobject *kobj, \ struct kobj_attribute *attr, \ char *page) \ { \ BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ return sprintf(page, _format "\n"); \ } \ static struct kobj_attribute format_attr_##_var = \ __ATTR(_name, 0444, __rapl_##_var##_show, NULL) #define RAPL_CNTR_WIDTH 32 #define RAPL_EVENT_ATTR_STR(_name, v, str) \ static struct perf_pmu_events_attr event_attr_##v = { \ .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ .id = 0, \ .event_str = str, \ }; struct rapl_pmu { raw_spinlock_t lock; int n_active; int cpu; struct list_head active_list; struct pmu *pmu; ktime_t timer_interval; struct hrtimer hrtimer; }; struct rapl_pmus { struct pmu pmu; unsigned int maxpkg; struct rapl_pmu *pmus[]; }; /* 1/2^hw_unit Joule */ static int rapl_hw_unit[NR_RAPL_DOMAINS] __read_mostly; static struct rapl_pmus *rapl_pmus; static cpumask_t rapl_cpu_mask; static unsigned int rapl_cntr_mask; static u64 rapl_timer_ms; static inline struct rapl_pmu *cpu_to_rapl_pmu(unsigned int cpu) { return rapl_pmus->pmus[topology_logical_package_id(cpu)]; } static inline u64 rapl_read_counter(struct perf_event *event) { u64 raw; rdmsrl(event->hw.event_base, raw); return raw; } static inline u64 rapl_scale(u64 v, int cfg) { if (cfg > NR_RAPL_DOMAINS) { pr_warn("Invalid domain %d, failed to scale data\n", cfg); return v; } /* * scale delta to smallest unit (1/2^32) * users must then scale back: count * 1/(1e9*2^32) to get Joules * or use ldexp(count, -32). * Watts = Joules/Time delta */ return v << (32 - rapl_hw_unit[cfg - 1]); } static u64 rapl_event_update(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; u64 prev_raw_count, new_raw_count; s64 delta, sdelta; int shift = RAPL_CNTR_WIDTH; again: prev_raw_count = local64_read(&hwc->prev_count); rdmsrl(event->hw.event_base, new_raw_count); if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, new_raw_count) != prev_raw_count) { cpu_relax(); goto again; } /* * Now we have the new raw value and have updated the prev * timestamp already. We can now calculate the elapsed delta * (event-)time and add that to the generic event. * * Careful, not all hw sign-extends above the physical width * of the count. */ delta = (new_raw_count << shift) - (prev_raw_count << shift); delta >>= shift; sdelta = rapl_scale(delta, event->hw.config); local64_add(sdelta, &event->count); return new_raw_count; } static void rapl_start_hrtimer(struct rapl_pmu *pmu) { hrtimer_start(&pmu->hrtimer, pmu->timer_interval, HRTIMER_MODE_REL_PINNED); } static enum hrtimer_restart rapl_hrtimer_handle(struct hrtimer *hrtimer) { struct rapl_pmu *pmu = container_of(hrtimer, struct rapl_pmu, hrtimer); struct perf_event *event; unsigned long flags; if (!pmu->n_active) return HRTIMER_NORESTART; raw_spin_lock_irqsave(&pmu->lock, flags); list_for_each_entry(event, &pmu->active_list, active_entry) rapl_event_update(event); raw_spin_unlock_irqrestore(&pmu->lock, flags); hrtimer_forward_now(hrtimer, pmu->timer_interval); return HRTIMER_RESTART; } static void rapl_hrtimer_init(struct rapl_pmu *pmu) { struct hrtimer *hr = &pmu->hrtimer; hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL); hr->function = rapl_hrtimer_handle; } static void __rapl_pmu_event_start(struct rapl_pmu *pmu, struct perf_event *event) { if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED))) return; event->hw.state = 0; list_add_tail(&event->active_entry, &pmu->active_list); local64_set(&event->hw.prev_count, rapl_read_counter(event)); pmu->n_active++; if (pmu->n_active == 1) rapl_start_hrtimer(pmu); } static void rapl_pmu_event_start(struct perf_event *event, int mode) { struct rapl_pmu *pmu = event->pmu_private; unsigned long flags; raw_spin_lock_irqsave(&pmu->lock, flags); __rapl_pmu_event_start(pmu, event); raw_spin_unlock_irqrestore(&pmu->lock, flags); } static void rapl_pmu_event_stop(struct perf_event *event, int mode) { struct rapl_pmu *pmu = event->pmu_private; struct hw_perf_event *hwc = &event->hw; unsigned long flags; raw_spin_lock_irqsave(&pmu->lock, flags); /* mark event as deactivated and stopped */ if (!(hwc->state & PERF_HES_STOPPED)) { WARN_ON_ONCE(pmu->n_active <= 0); pmu->n_active--; if (pmu->n_active == 0) hrtimer_cancel(&pmu->hrtimer); list_del(&event->active_entry); WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED); hwc->state |= PERF_HES_STOPPED; } /* check if update of sw counter is necessary */ if ((mode & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) { /* * Drain the remaining delta count out of a event * that we are disabling: */ rapl_event_update(event); hwc->state |= PERF_HES_UPTODATE; } raw_spin_unlock_irqrestore(&pmu->lock, flags); } static int rapl_pmu_event_add(struct perf_event *event, int mode) { struct rapl_pmu *pmu = event->pmu_private; struct hw_perf_event *hwc = &event->hw; unsigned long flags; raw_spin_lock_irqsave(&pmu->lock, flags); hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; if (mode & PERF_EF_START) __rapl_pmu_event_start(pmu, event); raw_spin_unlock_irqrestore(&pmu->lock, flags); return 0; } static void rapl_pmu_event_del(struct perf_event *event, int flags) { rapl_pmu_event_stop(event, PERF_EF_UPDATE); } static int rapl_pmu_event_init(struct perf_event *event) { u64 cfg = event->attr.config & RAPL_EVENT_MASK; int bit, msr, ret = 0; struct rapl_pmu *pmu; /* only look at RAPL events */ if (event->attr.type != rapl_pmus->pmu.type) return -ENOENT; /* check only supported bits are set */ if (event->attr.config & ~RAPL_EVENT_MASK) return -EINVAL; if (event->cpu < 0) return -EINVAL; event->event_caps |= PERF_EV_CAP_READ_ACTIVE_PKG; /* * check event is known (determines counter) */ switch (cfg) { case INTEL_RAPL_PP0: bit = RAPL_IDX_PP0_NRG_STAT; msr = MSR_PP0_ENERGY_STATUS; break; case INTEL_RAPL_PKG: bit = RAPL_IDX_PKG_NRG_STAT; msr = MSR_PKG_ENERGY_STATUS; break; case INTEL_RAPL_RAM: bit = RAPL_IDX_RAM_NRG_STAT; msr = MSR_DRAM_ENERGY_STATUS; break; case INTEL_RAPL_PP1: bit = RAPL_IDX_PP1_NRG_STAT; msr = MSR_PP1_ENERGY_STATUS; break; case INTEL_RAPL_PSYS: bit = RAPL_IDX_PSYS_NRG_STAT; msr = MSR_PLATFORM_ENERGY_STATUS; break; default: return -EINVAL; } /* check event supported */ if (!(rapl_cntr_mask & (1 << bit))) return -EINVAL; /* unsupported modes and filters */ if (event->attr.exclude_user || event->attr.exclude_kernel || event->attr.exclude_hv || event->attr.exclude_idle || event->attr.exclude_host || event->attr.exclude_guest || event->attr.sample_period) /* no sampling */ return -EINVAL; /* must be done before validate_group */ pmu = cpu_to_rapl_pmu(event->cpu); event->cpu = pmu->cpu; event->pmu_private = pmu; event->hw.event_base = msr; event->hw.config = cfg; event->hw.idx = bit; return ret; } static void rapl_pmu_event_read(struct perf_event *event) { rapl_event_update(event); } static ssize_t rapl_get_attr_cpumask(struct device *dev, struct device_attribute *attr, char *buf) { return cpumap_print_to_pagebuf(true, buf, &rapl_cpu_mask); } static DEVICE_ATTR(cpumask, S_IRUGO, rapl_get_attr_cpumask, NULL); static struct attribute *rapl_pmu_attrs[] = { &dev_attr_cpumask.attr, NULL, }; static struct attribute_group rapl_pmu_attr_group = { .attrs = rapl_pmu_attrs, }; RAPL_EVENT_ATTR_STR(energy-cores, rapl_cores, "event=0x01"); RAPL_EVENT_ATTR_STR(energy-pkg , rapl_pkg, "event=0x02"); RAPL_EVENT_ATTR_STR(energy-ram , rapl_ram, "event=0x03"); RAPL_EVENT_ATTR_STR(energy-gpu , rapl_gpu, "event=0x04"); RAPL_EVENT_ATTR_STR(energy-psys, rapl_psys, "event=0x05"); RAPL_EVENT_ATTR_STR(energy-cores.unit, rapl_cores_unit, "Joules"); RAPL_EVENT_ATTR_STR(energy-pkg.unit , rapl_pkg_unit, "Joules"); RAPL_EVENT_ATTR_STR(energy-ram.unit , rapl_ram_unit, "Joules"); RAPL_EVENT_ATTR_STR(energy-gpu.unit , rapl_gpu_unit, "Joules"); RAPL_EVENT_ATTR_STR(energy-psys.unit, rapl_psys_unit, "Joules"); /* * we compute in 0.23 nJ increments regardless of MSR */ RAPL_EVENT_ATTR_STR(energy-cores.scale, rapl_cores_scale, "2.3283064365386962890625e-10"); RAPL_EVENT_ATTR_STR(energy-pkg.scale, rapl_pkg_scale, "2.3283064365386962890625e-10"); RAPL_EVENT_ATTR_STR(energy-ram.scale, rapl_ram_scale, "2.3283064365386962890625e-10"); RAPL_EVENT_ATTR_STR(energy-gpu.scale, rapl_gpu_scale, "2.3283064365386962890625e-10"); RAPL_EVENT_ATTR_STR(energy-psys.scale, rapl_psys_scale, "2.3283064365386962890625e-10"); static struct attribute *rapl_events_srv_attr[] = { EVENT_PTR(rapl_cores), EVENT_PTR(rapl_pkg), EVENT_PTR(rapl_ram), EVENT_PTR(rapl_cores_unit), EVENT_PTR(rapl_pkg_unit), EVENT_PTR(rapl_ram_unit), EVENT_PTR(rapl_cores_scale), EVENT_PTR(rapl_pkg_scale), EVENT_PTR(rapl_ram_scale), NULL, }; static struct attribute *rapl_events_cln_attr[] = { EVENT_PTR(rapl_cores), EVENT_PTR(rapl_pkg), EVENT_PTR(rapl_gpu), EVENT_PTR(rapl_cores_unit), EVENT_PTR(rapl_pkg_unit), EVENT_PTR(rapl_gpu_unit), EVENT_PTR(rapl_cores_scale), EVENT_PTR(rapl_pkg_scale), EVENT_PTR(rapl_gpu_scale), NULL, }; static struct attribute *rapl_events_hsw_attr[] = { EVENT_PTR(rapl_cores), EVENT_PTR(rapl_pkg), EVENT_PTR(rapl_gpu), EVENT_PTR(rapl_ram), EVENT_PTR(rapl_cores_unit), EVENT_PTR(rapl_pkg_unit), EVENT_PTR(rapl_gpu_unit), EVENT_PTR(rapl_ram_unit), EVENT_PTR(rapl_cores_scale), EVENT_PTR(rapl_pkg_scale), EVENT_PTR(rapl_gpu_scale), EVENT_PTR(rapl_ram_scale), NULL, }; static struct attribute *rapl_events_skl_attr[] = { EVENT_PTR(rapl_cores), EVENT_PTR(rapl_pkg), EVENT_PTR(rapl_gpu), EVENT_PTR(rapl_ram), EVENT_PTR(rapl_psys), EVENT_PTR(rapl_cores_unit), EVENT_PTR(rapl_pkg_unit), EVENT_PTR(rapl_gpu_unit), EVENT_PTR(rapl_ram_unit), EVENT_PTR(rapl_psys_unit), EVENT_PTR(rapl_cores_scale), EVENT_PTR(rapl_pkg_scale), EVENT_PTR(rapl_gpu_scale), EVENT_PTR(rapl_ram_scale), EVENT_PTR(rapl_psys_scale), NULL, }; static struct attribute *rapl_events_knl_attr[] = { EVENT_PTR(rapl_pkg), EVENT_PTR(rapl_ram), EVENT_PTR(rapl_pkg_unit), EVENT_PTR(rapl_ram_unit), EVENT_PTR(rapl_pkg_scale), EVENT_PTR(rapl_ram_scale), NULL, }; static struct attribute_group rapl_pmu_events_group = { .name = "events", .attrs = NULL, /* patched at runtime */ }; DEFINE_RAPL_FORMAT_ATTR(event, event, "config:0-7"); static struct attribute *rapl_formats_attr[] = { &format_attr_event.attr, NULL, }; static struct attribute_group rapl_pmu_format_group = { .name = "format", .attrs = rapl_formats_attr, }; const struct attribute_group *rapl_attr_groups[] = { &rapl_pmu_attr_group, &rapl_pmu_format_group, &rapl_pmu_events_group, NULL, }; static int rapl_cpu_offline(unsigned int cpu) { struct rapl_pmu *pmu = cpu_to_rapl_pmu(cpu); int target; /* Check if exiting cpu is used for collecting rapl events */ if (!cpumask_test_and_clear_cpu(cpu, &rapl_cpu_mask)) return 0; pmu->cpu = -1; /* Find a new cpu to collect rapl events */ target = cpumask_any_but(topology_core_cpumask(cpu), cpu); /* Migrate rapl events to the new target */ if (target < nr_cpu_ids) { cpumask_set_cpu(target, &rapl_cpu_mask); pmu->cpu = target; perf_pmu_migrate_context(pmu->pmu, cpu, target); } return 0; } static int rapl_cpu_online(unsigned int cpu) { struct rapl_pmu *pmu = cpu_to_rapl_pmu(cpu); int target; /* * Check if there is an online cpu in the package which collects rapl * events already. */ target = cpumask_any_and(&rapl_cpu_mask, topology_core_cpumask(cpu)); if (target < nr_cpu_ids) return 0; cpumask_set_cpu(cpu, &rapl_cpu_mask); pmu->cpu = cpu; return 0; } static int rapl_cpu_prepare(unsigned int cpu) { struct rapl_pmu *pmu = cpu_to_rapl_pmu(cpu); if (pmu) return 0; pmu = kzalloc_node(sizeof(*pmu), GFP_KERNEL, cpu_to_node(cpu)); if (!pmu) return -ENOMEM; raw_spin_lock_init(&pmu->lock); INIT_LIST_HEAD(&pmu->active_list); pmu->pmu = &rapl_pmus->pmu; pmu->timer_interval = ms_to_ktime(rapl_timer_ms); pmu->cpu = -1; rapl_hrtimer_init(pmu); rapl_pmus->pmus[topology_logical_package_id(cpu)] = pmu; return 0; } static int rapl_check_hw_unit(bool apply_quirk) { u64 msr_rapl_power_unit_bits; int i; /* protect rdmsrl() to handle virtualization */ if (rdmsrl_safe(MSR_RAPL_POWER_UNIT, &msr_rapl_power_unit_bits)) return -1; for (i = 0; i < NR_RAPL_DOMAINS; i++) rapl_hw_unit[i] = (msr_rapl_power_unit_bits >> 8) & 0x1FULL; /* * DRAM domain on HSW server and KNL has fixed energy unit which can be * different than the unit from power unit MSR. See * "Intel Xeon Processor E5-1600 and E5-2600 v3 Product Families, V2 * of 2. Datasheet, September 2014, Reference Number: 330784-001 " */ if (apply_quirk) rapl_hw_unit[RAPL_IDX_RAM_NRG_STAT] = 16; /* * Calculate the timer rate: * Use reference of 200W for scaling the timeout to avoid counter * overflows. 200W = 200 Joules/sec * Divide interval by 2 to avoid lockstep (2 * 100) * if hw unit is 32, then we use 2 ms 1/200/2 */ rapl_timer_ms = 2; if (rapl_hw_unit[0] < 32) { rapl_timer_ms = (1000 / (2 * 100)); rapl_timer_ms *= (1ULL << (32 - rapl_hw_unit[0] - 1)); } return 0; } static void __init rapl_advertise(void) { int i; pr_info("API unit is 2^-32 Joules, %d fixed counters, %llu ms ovfl timer\n", hweight32(rapl_cntr_mask), rapl_timer_ms); for (i = 0; i < NR_RAPL_DOMAINS; i++) { if (rapl_cntr_mask & (1 << i)) { pr_info("hw unit of domain %s 2^-%d Joules\n", rapl_domain_names[i], rapl_hw_unit[i]); } } } static void cleanup_rapl_pmus(void) { int i; for (i = 0; i < rapl_pmus->maxpkg; i++) kfree(rapl_pmus->pmus[i]); kfree(rapl_pmus); } static int __init init_rapl_pmus(void) { int maxpkg = topology_max_packages(); size_t size; size = sizeof(*rapl_pmus) + maxpkg * sizeof(struct rapl_pmu *); rapl_pmus = kzalloc(size, GFP_KERNEL); if (!rapl_pmus) return -ENOMEM; rapl_pmus->maxpkg = maxpkg; rapl_pmus->pmu.attr_groups = rapl_attr_groups; rapl_pmus->pmu.task_ctx_nr = perf_invalid_context; rapl_pmus->pmu.event_init = rapl_pmu_event_init; rapl_pmus->pmu.add = rapl_pmu_event_add; rapl_pmus->pmu.del = rapl_pmu_event_del; rapl_pmus->pmu.start = rapl_pmu_event_start; rapl_pmus->pmu.stop = rapl_pmu_event_stop; rapl_pmus->pmu.read = rapl_pmu_event_read; return 0; } #define X86_RAPL_MODEL_MATCH(model, init) \ { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, (unsigned long)&init } struct intel_rapl_init_fun { bool apply_quirk; int cntr_mask; struct attribute **attrs; }; static const struct intel_rapl_init_fun snb_rapl_init __initconst = { .apply_quirk = false, .cntr_mask = RAPL_IDX_CLN, .attrs = rapl_events_cln_attr, }; static const struct intel_rapl_init_fun hsx_rapl_init __initconst = { .apply_quirk = true, .cntr_mask = RAPL_IDX_SRV, .attrs = rapl_events_srv_attr, }; static const struct intel_rapl_init_fun hsw_rapl_init __initconst = { .apply_quirk = false, .cntr_mask = RAPL_IDX_HSW, .attrs = rapl_events_hsw_attr, }; static const struct intel_rapl_init_fun snbep_rapl_init __initconst = { .apply_quirk = false, .cntr_mask = RAPL_IDX_SRV, .attrs = rapl_events_srv_attr, }; static const struct intel_rapl_init_fun knl_rapl_init __initconst = { .apply_quirk = true, .cntr_mask = RAPL_IDX_KNL, .attrs = rapl_events_knl_attr, }; static const struct intel_rapl_init_fun skl_rapl_init __initconst = { .apply_quirk = false, .cntr_mask = RAPL_IDX_SKL_CLN, .attrs = rapl_events_skl_attr, }; static const struct x86_cpu_id rapl_cpu_match[] __initconst = { X86_RAPL_MODEL_MATCH(INTEL_FAM6_SANDYBRIDGE, snb_rapl_init), X86_RAPL_MODEL_MATCH(INTEL_FAM6_SANDYBRIDGE_X, snbep_rapl_init), X86_RAPL_MODEL_MATCH(INTEL_FAM6_IVYBRIDGE, snb_rapl_init), X86_RAPL_MODEL_MATCH(INTEL_FAM6_IVYBRIDGE_X, snbep_rapl_init), X86_RAPL_MODEL_MATCH(INTEL_FAM6_HASWELL_CORE, hsw_rapl_init), X86_RAPL_MODEL_MATCH(INTEL_FAM6_HASWELL_X, hsw_rapl_init), X86_RAPL_MODEL_MATCH(INTEL_FAM6_HASWELL_ULT, hsw_rapl_init), X86_RAPL_MODEL_MATCH(INTEL_FAM6_HASWELL_GT3E, hsw_rapl_init), X86_RAPL_MODEL_MATCH(INTEL_FAM6_BROADWELL_CORE, hsw_rapl_init), X86_RAPL_MODEL_MATCH(INTEL_FAM6_BROADWELL_GT3E, hsw_rapl_init), X86_RAPL_MODEL_MATCH(INTEL_FAM6_BROADWELL_X, hsw_rapl_init), X86_RAPL_MODEL_MATCH(INTEL_FAM6_BROADWELL_XEON_D, hsw_rapl_init), X86_RAPL_MODEL_MATCH(INTEL_FAM6_XEON_PHI_KNL, knl_rapl_init), X86_RAPL_MODEL_MATCH(INTEL_FAM6_XEON_PHI_KNM, knl_rapl_init), X86_RAPL_MODEL_MATCH(INTEL_FAM6_SKYLAKE_MOBILE, skl_rapl_init), X86_RAPL_MODEL_MATCH(INTEL_FAM6_SKYLAKE_DESKTOP, skl_rapl_init), X86_RAPL_MODEL_MATCH(INTEL_FAM6_SKYLAKE_X, hsx_rapl_init), X86_RAPL_MODEL_MATCH(INTEL_FAM6_ATOM_GOLDMONT, hsw_rapl_init), {}, }; MODULE_DEVICE_TABLE(x86cpu, rapl_cpu_match); static int __init rapl_pmu_init(void) { const struct x86_cpu_id *id; struct intel_rapl_init_fun *rapl_init; bool apply_quirk; int ret; id = x86_match_cpu(rapl_cpu_match); if (!id) return -ENODEV; rapl_init = (struct intel_rapl_init_fun *)id->driver_data; apply_quirk = rapl_init->apply_quirk; rapl_cntr_mask = rapl_init->cntr_mask; rapl_pmu_events_group.attrs = rapl_init->attrs; ret = rapl_check_hw_unit(apply_quirk); if (ret) return ret; ret = init_rapl_pmus(); if (ret) return ret; /* * Install callbacks. Core will call them for each online cpu. */ ret = cpuhp_setup_state(CPUHP_PERF_X86_RAPL_PREP, "perf/x86/rapl:prepare", rapl_cpu_prepare, NULL); if (ret) goto out; ret = cpuhp_setup_state(CPUHP_AP_PERF_X86_RAPL_ONLINE, "perf/x86/rapl:online", rapl_cpu_online, rapl_cpu_offline); if (ret) goto out1; ret = perf_pmu_register(&rapl_pmus->pmu, "power", -1); if (ret) goto out2; rapl_advertise(); return 0; out2: cpuhp_remove_state(CPUHP_AP_PERF_X86_RAPL_ONLINE); out1: cpuhp_remove_state(CPUHP_PERF_X86_RAPL_PREP); out: pr_warn("Initialization failed (%d), disabled\n", ret); cleanup_rapl_pmus(); return ret; } module_init(rapl_pmu_init); static void __exit intel_rapl_exit(void) { cpuhp_remove_state_nocalls(CPUHP_AP_PERF_X86_RAPL_ONLINE); cpuhp_remove_state_nocalls(CPUHP_PERF_X86_RAPL_PREP); perf_pmu_unregister(&rapl_pmus->pmu); cleanup_rapl_pmus(); } module_exit(intel_rapl_exit);