/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * SGI UV architectural definitions * * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved. */ #ifndef _ASM_X86_UV_UV_HUB_H #define _ASM_X86_UV_UV_HUB_H #include #include #include #include #include /* * Addressing Terminology * * M - The low M bits of a physical address represent the offset * into the blade local memory. RAM memory on a blade is physically * contiguous (although various IO spaces may punch holes in * it).. * * N - Number of bits in the node portion of a socket physical * address. * * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of * routers always have low bit of 1, C/MBricks have low bit * equal to 0. Most addressing macros that target UV hub chips * right shift the NASID by 1 to exclude the always-zero bit. * NASIDs contain up to 15 bits. * * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead * of nasids. * * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant * of the nasid for socket usage. * * * NumaLink Global Physical Address Format: * +--------------------------------+---------------------+ * |00..000| GNODE | NodeOffset | * +--------------------------------+---------------------+ * |<-------53 - M bits --->|<--------M bits -----> * * M - number of node offset bits (35 .. 40) * * * Memory/UV-HUB Processor Socket Address Format: * +----------------+---------------+---------------------+ * |00..000000000000| PNODE | NodeOffset | * +----------------+---------------+---------------------+ * <--- N bits --->|<--------M bits -----> * * M - number of node offset bits (35 .. 40) * N - number of PNODE bits (0 .. 10) * * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64). * The actual values are configuration dependent and are set at * boot time. M & N values are set by the hardware/BIOS at boot. * * * APICID format * NOTE!!!!!! This is the current format of the APICID. However, code * should assume that this will change in the future. Use functions * in this file for all APICID bit manipulations and conversion. * * 1111110000000000 * 5432109876543210 * pppppppppplc0cch * sssssssssss * * p = pnode bits * l = socket number on board * c = core * h = hyperthread * s = bits that are in the SOCKET_ID CSR * * Note: Processor only supports 12 bits in the APICID register. The ACPI * tables hold all 16 bits. Software needs to be aware of this. * * Unless otherwise specified, all references to APICID refer to * the FULL value contained in ACPI tables, not the subset in the * processor APICID register. */ /* * Maximum number of bricks in all partitions and in all coherency domains. * This is the total number of bricks accessible in the numalink fabric. It * includes all C & M bricks. Routers are NOT included. * * This value is also the value of the maximum number of non-router NASIDs * in the numalink fabric. * * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused. */ #define UV_MAX_NUMALINK_BLADES 16384 /* * Maximum number of C/Mbricks within a software SSI (hardware may support * more). */ #define UV_MAX_SSI_BLADES 256 /* * The largest possible NASID of a C or M brick (+ 2) */ #define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_NODES * 2) /* * The following defines attributes of the HUB chip. These attributes are * frequently referenced and are kept in the per-cpu data areas of each cpu. * They are kept together in a struct to minimize cache misses. */ struct uv_hub_info_s { unsigned long global_mmr_base; unsigned long gpa_mask; unsigned long gnode_upper; unsigned long lowmem_remap_top; unsigned long lowmem_remap_base; unsigned short pnode; unsigned short pnode_mask; unsigned short coherency_domain_number; unsigned short numa_blade_id; unsigned char blade_processor_id; unsigned char m_val; unsigned char n_val; }; DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info); #define uv_hub_info (&__get_cpu_var(__uv_hub_info)) #define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu)) /* * Local & Global MMR space macros. * Note: macros are intended to be used ONLY by inline functions * in this file - not by other kernel code. * n - NASID (full 15-bit global nasid) * g - GNODE (full 15-bit global nasid, right shifted 1) * p - PNODE (local part of nsids, right shifted 1) */ #define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask) #define UV_PNODE_TO_NASID(p) (((p) << 1) | uv_hub_info->gnode_upper) #define UV_LOCAL_MMR_BASE 0xf4000000UL #define UV_GLOBAL_MMR32_BASE 0xf8000000UL #define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base) #define UV_LOCAL_MMR_SIZE (64UL * 1024 * 1024) #define UV_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024) #define UV_GLOBAL_MMR32_PNODE_SHIFT 15 #define UV_GLOBAL_MMR64_PNODE_SHIFT 26 #define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT)) #define UV_GLOBAL_MMR64_PNODE_BITS(p) \ ((unsigned long)(p) << UV_GLOBAL_MMR64_PNODE_SHIFT) #define UV_APIC_PNODE_SHIFT 6 /* * Macros for converting between kernel virtual addresses, socket local physical * addresses, and UV global physical addresses. * Note: use the standard __pa() & __va() macros for converting * between socket virtual and socket physical addresses. */ /* socket phys RAM --> UV global physical address */ static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr) { if (paddr < uv_hub_info->lowmem_remap_top) paddr += uv_hub_info->lowmem_remap_base; return paddr | uv_hub_info->gnode_upper; } /* socket virtual --> UV global physical address */ static inline unsigned long uv_gpa(void *v) { return __pa(v) | uv_hub_info->gnode_upper; } /* socket virtual --> UV global physical address */ static inline void *uv_vgpa(void *v) { return (void *)uv_gpa(v); } /* UV global physical address --> socket virtual */ static inline void *uv_va(unsigned long gpa) { return __va(gpa & uv_hub_info->gpa_mask); } /* pnode, offset --> socket virtual */ static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset) { return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset); } /* * Extract a PNODE from an APICID (full apicid, not processor subset) */ static inline int uv_apicid_to_pnode(int apicid) { return (apicid >> UV_APIC_PNODE_SHIFT); } /* * Access global MMRs using the low memory MMR32 space. This region supports * faster MMR access but not all MMRs are accessible in this space. */ static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset) { return __va(UV_GLOBAL_MMR32_BASE | UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset); } static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val) { *uv_global_mmr32_address(pnode, offset) = val; } static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset) { return *uv_global_mmr32_address(pnode, offset); } /* * Access Global MMR space using the MMR space located at the top of physical * memory. */ static inline unsigned long *uv_global_mmr64_address(int pnode, unsigned long offset) { return __va(UV_GLOBAL_MMR64_BASE | UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset); } static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val) { *uv_global_mmr64_address(pnode, offset) = val; } static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset) { return *uv_global_mmr64_address(pnode, offset); } /* * Access hub local MMRs. Faster than using global space but only local MMRs * are accessible. */ static inline unsigned long *uv_local_mmr_address(unsigned long offset) { return __va(UV_LOCAL_MMR_BASE | offset); } static inline unsigned long uv_read_local_mmr(unsigned long offset) { return *uv_local_mmr_address(offset); } static inline void uv_write_local_mmr(unsigned long offset, unsigned long val) { *uv_local_mmr_address(offset) = val; } /* * Structures and definitions for converting between cpu, node, pnode, and blade * numbers. */ struct uv_blade_info { unsigned short nr_possible_cpus; unsigned short nr_online_cpus; unsigned short pnode; }; extern struct uv_blade_info *uv_blade_info; extern short *uv_node_to_blade; extern short *uv_cpu_to_blade; extern short uv_possible_blades; /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */ static inline int uv_blade_processor_id(void) { return uv_hub_info->blade_processor_id; } /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */ static inline int uv_numa_blade_id(void) { return uv_hub_info->numa_blade_id; } /* Convert a cpu number to the the UV blade number */ static inline int uv_cpu_to_blade_id(int cpu) { return uv_cpu_to_blade[cpu]; } /* Convert linux node number to the UV blade number */ static inline int uv_node_to_blade_id(int nid) { return uv_node_to_blade[nid]; } /* Convert a blade id to the PNODE of the blade */ static inline int uv_blade_to_pnode(int bid) { return uv_blade_info[bid].pnode; } /* Determine the number of possible cpus on a blade */ static inline int uv_blade_nr_possible_cpus(int bid) { return uv_blade_info[bid].nr_possible_cpus; } /* Determine the number of online cpus on a blade */ static inline int uv_blade_nr_online_cpus(int bid) { return uv_blade_info[bid].nr_online_cpus; } /* Convert a cpu id to the PNODE of the blade containing the cpu */ static inline int uv_cpu_to_pnode(int cpu) { return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode; } /* Convert a linux node number to the PNODE of the blade */ static inline int uv_node_to_pnode(int nid) { return uv_blade_info[uv_node_to_blade_id(nid)].pnode; } /* Maximum possible number of blades */ static inline int uv_num_possible_blades(void) { return uv_possible_blades; } #endif /* _ASM_X86_UV_UV_HUB_H */