#ifdef CONFIG_CPU_SUP_INTEL /* * Intel PerfMon, used on Core and later. */ static const u64 intel_perfmon_event_map[] = { [PERF_COUNT_HW_CPU_CYCLES] = 0x003c, [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0, [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e, [PERF_COUNT_HW_CACHE_MISSES] = 0x412e, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4, [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5, [PERF_COUNT_HW_BUS_CYCLES] = 0x013c, }; static struct event_constraint intel_core_event_constraints[] = { INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */ INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */ INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */ INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */ INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */ INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */ EVENT_CONSTRAINT_END }; static struct event_constraint intel_core2_event_constraints[] = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ /* * Core2 has Fixed Counter 2 listed as CPU_CLK_UNHALTED.REF and event * 0x013c as CPU_CLK_UNHALTED.BUS and specifies there is a fixed * ratio between these counters. */ /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */ INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */ INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */ INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */ INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */ INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */ INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */ INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */ INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */ INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */ INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */ EVENT_CONSTRAINT_END }; static struct event_constraint intel_nehalem_event_constraints[] = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */ INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */ INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */ INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */ INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */ INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */ INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */ INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */ INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */ EVENT_CONSTRAINT_END }; static struct event_constraint intel_westmere_event_constraints[] = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */ INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */ INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */ INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */ INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */ EVENT_CONSTRAINT_END }; static struct event_constraint intel_gen_event_constraints[] = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */ EVENT_CONSTRAINT_END }; static u64 intel_pmu_event_map(int hw_event) { return intel_perfmon_event_map[hw_event]; } static __initconst const u64 westmere_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */ [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */ }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0324, /* L2_RQSTS.LOADS */ [ C(RESULT_MISS) ] = 0x0224, /* L2_RQSTS.LD_MISS */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x0c24, /* L2_RQSTS.RFOS */ [ C(RESULT_MISS) ] = 0x0824, /* L2_RQSTS.RFO_MISS */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x4f2e, /* LLC Reference */ [ C(RESULT_MISS) ] = 0x412e, /* LLC Misses */ }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */ [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, }; static __initconst const u64 nehalem_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */ [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */ [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */ [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */ }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0324, /* L2_RQSTS.LOADS */ [ C(RESULT_MISS) ] = 0x0224, /* L2_RQSTS.LD_MISS */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x0c24, /* L2_RQSTS.RFOS */ [ C(RESULT_MISS) ] = 0x0824, /* L2_RQSTS.RFO_MISS */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x4f2e, /* LLC Reference */ [ C(RESULT_MISS) ] = 0x412e, /* LLC Misses */ }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */ [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */ [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */ [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, }; static __initconst const u64 core2_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */ [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */ [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */ [ C(RESULT_MISS) ] = 0, }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */ [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */ [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */ [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */ [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */ [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, }; static __initconst const u64 atom_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */ [ C(RESULT_MISS) ] = 0, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */ [ C(RESULT_MISS) ] = 0, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0, }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */ [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */ [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */ [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */ [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, }; static void intel_pmu_disable_all(void) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0); if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask)) intel_pmu_disable_bts(); intel_pmu_pebs_disable_all(); intel_pmu_lbr_disable_all(); } static void intel_pmu_enable_all(int added) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); intel_pmu_pebs_enable_all(); intel_pmu_lbr_enable_all(); wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl); if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask)) { struct perf_event *event = cpuc->events[X86_PMC_IDX_FIXED_BTS]; if (WARN_ON_ONCE(!event)) return; intel_pmu_enable_bts(event->hw.config); } } /* * Workaround for: * Intel Errata AAK100 (model 26) * Intel Errata AAP53 (model 30) * Intel Errata BD53 (model 44) * * The official story: * These chips need to be 'reset' when adding counters by programming the * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either * in sequence on the same PMC or on different PMCs. * * In practise it appears some of these events do in fact count, and * we need to programm all 4 events. */ static void intel_pmu_nhm_workaround(void) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); static const unsigned long nhm_magic[4] = { 0x4300B5, 0x4300D2, 0x4300B1, 0x4300B1 }; struct perf_event *event; int i; /* * The Errata requires below steps: * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL; * 2) Configure 4 PERFEVTSELx with the magic events and clear * the corresponding PMCx; * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL; * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL; * 5) Clear 4 pairs of ERFEVTSELx and PMCx; */ /* * The real steps we choose are a little different from above. * A) To reduce MSR operations, we don't run step 1) as they * are already cleared before this function is called; * B) Call x86_perf_event_update to save PMCx before configuring * PERFEVTSELx with magic number; * C) With step 5), we do clear only when the PERFEVTSELx is * not used currently. * D) Call x86_perf_event_set_period to restore PMCx; */ /* We always operate 4 pairs of PERF Counters */ for (i = 0; i < 4; i++) { event = cpuc->events[i]; if (event) x86_perf_event_update(event); } for (i = 0; i < 4; i++) { wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]); wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0); } wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf); wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0); for (i = 0; i < 4; i++) { event = cpuc->events[i]; if (event) { x86_perf_event_set_period(event); __x86_pmu_enable_event(&event->hw, ARCH_PERFMON_EVENTSEL_ENABLE); } else wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0); } } static void intel_pmu_nhm_enable_all(int added) { if (added) intel_pmu_nhm_workaround(); intel_pmu_enable_all(added); } static inline u64 intel_pmu_get_status(void) { u64 status; rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); return status; } static inline void intel_pmu_ack_status(u64 ack) { wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack); } static void intel_pmu_disable_fixed(struct hw_perf_event *hwc) { int idx = hwc->idx - X86_PMC_IDX_FIXED; u64 ctrl_val, mask; mask = 0xfULL << (idx * 4); rdmsrl(hwc->config_base, ctrl_val); ctrl_val &= ~mask; wrmsrl(hwc->config_base, ctrl_val); } static void intel_pmu_disable_event(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) { intel_pmu_disable_bts(); intel_pmu_drain_bts_buffer(); return; } if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) { intel_pmu_disable_fixed(hwc); return; } x86_pmu_disable_event(event); if (unlikely(event->attr.precise_ip)) intel_pmu_pebs_disable(event); } static void intel_pmu_enable_fixed(struct hw_perf_event *hwc) { int idx = hwc->idx - X86_PMC_IDX_FIXED; u64 ctrl_val, bits, mask; /* * Enable IRQ generation (0x8), * and enable ring-3 counting (0x2) and ring-0 counting (0x1) * if requested: */ bits = 0x8ULL; if (hwc->config & ARCH_PERFMON_EVENTSEL_USR) bits |= 0x2; if (hwc->config & ARCH_PERFMON_EVENTSEL_OS) bits |= 0x1; /* * ANY bit is supported in v3 and up */ if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY) bits |= 0x4; bits <<= (idx * 4); mask = 0xfULL << (idx * 4); rdmsrl(hwc->config_base, ctrl_val); ctrl_val &= ~mask; ctrl_val |= bits; wrmsrl(hwc->config_base, ctrl_val); } static void intel_pmu_enable_event(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) { if (!__get_cpu_var(cpu_hw_events).enabled) return; intel_pmu_enable_bts(hwc->config); return; } if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) { intel_pmu_enable_fixed(hwc); return; } if (unlikely(event->attr.precise_ip)) intel_pmu_pebs_enable(event); __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); } /* * Save and restart an expired event. Called by NMI contexts, * so it has to be careful about preempting normal event ops: */ static int intel_pmu_save_and_restart(struct perf_event *event) { x86_perf_event_update(event); return x86_perf_event_set_period(event); } static void intel_pmu_reset(void) { struct debug_store *ds = __get_cpu_var(cpu_hw_events).ds; unsigned long flags; int idx; if (!x86_pmu.num_counters) return; local_irq_save(flags); printk("clearing PMU state on CPU#%d\n", smp_processor_id()); for (idx = 0; idx < x86_pmu.num_counters; idx++) { checking_wrmsrl(x86_pmu.eventsel + idx, 0ull); checking_wrmsrl(x86_pmu.perfctr + idx, 0ull); } for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull); if (ds) ds->bts_index = ds->bts_buffer_base; local_irq_restore(flags); } /* * This handler is triggered by the local APIC, so the APIC IRQ handling * rules apply: */ static int intel_pmu_handle_irq(struct pt_regs *regs) { struct perf_sample_data data; struct cpu_hw_events *cpuc; int bit, loops; u64 status; int handled = 0; perf_sample_data_init(&data, 0); cpuc = &__get_cpu_var(cpu_hw_events); intel_pmu_disable_all(); intel_pmu_drain_bts_buffer(); status = intel_pmu_get_status(); if (!status) { intel_pmu_enable_all(0); return 0; } loops = 0; again: intel_pmu_ack_status(status); if (++loops > 100) { WARN_ONCE(1, "perfevents: irq loop stuck!\n"); perf_event_print_debug(); intel_pmu_reset(); goto done; } inc_irq_stat(apic_perf_irqs); intel_pmu_lbr_read(); /* * PEBS overflow sets bit 62 in the global status register */ if (__test_and_clear_bit(62, (unsigned long *)&status)) { handled++; x86_pmu.drain_pebs(regs); } for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) { struct perf_event *event = cpuc->events[bit]; handled++; if (!test_bit(bit, cpuc->active_mask)) continue; if (!intel_pmu_save_and_restart(event)) continue; data.period = event->hw.last_period; if (perf_event_overflow(event, 1, &data, regs)) x86_pmu_stop(event); } /* * Repeat if there is more work to be done: */ status = intel_pmu_get_status(); if (status) goto again; done: intel_pmu_enable_all(0); return handled; } static struct event_constraint * intel_bts_constraints(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; unsigned int hw_event, bts_event; hw_event = hwc->config & INTEL_ARCH_EVENT_MASK; bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS); if (unlikely(hw_event == bts_event && hwc->sample_period == 1)) return &bts_constraint; return NULL; } static struct event_constraint * intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event) { struct event_constraint *c; c = intel_bts_constraints(event); if (c) return c; c = intel_pebs_constraints(event); if (c) return c; return x86_get_event_constraints(cpuc, event); } static int intel_pmu_hw_config(struct perf_event *event) { int ret = x86_pmu_hw_config(event); if (ret) return ret; if (event->attr.type != PERF_TYPE_RAW) return 0; if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY)) return 0; if (x86_pmu.version < 3) return -EINVAL; if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) return -EACCES; event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY; return 0; } static __initconst const struct x86_pmu core_pmu = { .name = "core", .handle_irq = x86_pmu_handle_irq, .disable_all = x86_pmu_disable_all, .enable_all = x86_pmu_enable_all, .enable = x86_pmu_enable_event, .disable = x86_pmu_disable_event, .hw_config = x86_pmu_hw_config, .schedule_events = x86_schedule_events, .eventsel = MSR_ARCH_PERFMON_EVENTSEL0, .perfctr = MSR_ARCH_PERFMON_PERFCTR0, .event_map = intel_pmu_event_map, .max_events = ARRAY_SIZE(intel_perfmon_event_map), .apic = 1, /* * Intel PMCs cannot be accessed sanely above 32 bit width, * so we install an artificial 1<<31 period regardless of * the generic event period: */ .max_period = (1ULL << 31) - 1, .get_event_constraints = intel_get_event_constraints, .event_constraints = intel_core_event_constraints, }; static void intel_pmu_cpu_starting(int cpu) { init_debug_store_on_cpu(cpu); /* * Deal with CPUs that don't clear their LBRs on power-up. */ intel_pmu_lbr_reset(); } static void intel_pmu_cpu_dying(int cpu) { fini_debug_store_on_cpu(cpu); } static __initconst const struct x86_pmu intel_pmu = { .name = "Intel", .handle_irq = intel_pmu_handle_irq, .disable_all = intel_pmu_disable_all, .enable_all = intel_pmu_enable_all, .enable = intel_pmu_enable_event, .disable = intel_pmu_disable_event, .hw_config = intel_pmu_hw_config, .schedule_events = x86_schedule_events, .eventsel = MSR_ARCH_PERFMON_EVENTSEL0, .perfctr = MSR_ARCH_PERFMON_PERFCTR0, .event_map = intel_pmu_event_map, .max_events = ARRAY_SIZE(intel_perfmon_event_map), .apic = 1, /* * Intel PMCs cannot be accessed sanely above 32 bit width, * so we install an artificial 1<<31 period regardless of * the generic event period: */ .max_period = (1ULL << 31) - 1, .get_event_constraints = intel_get_event_constraints, .cpu_starting = intel_pmu_cpu_starting, .cpu_dying = intel_pmu_cpu_dying, }; static void intel_clovertown_quirks(void) { /* * PEBS is unreliable due to: * * AJ67 - PEBS may experience CPL leaks * AJ68 - PEBS PMI may be delayed by one event * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12] * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS * * AJ67 could be worked around by restricting the OS/USR flags. * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI. * * AJ106 could possibly be worked around by not allowing LBR * usage from PEBS, including the fixup. * AJ68 could possibly be worked around by always programming * a pebs_event_reset[0] value and coping with the lost events. * * But taken together it might just make sense to not enable PEBS on * these chips. */ printk(KERN_WARNING "PEBS disabled due to CPU errata.\n"); x86_pmu.pebs = 0; x86_pmu.pebs_constraints = NULL; } static __init int intel_pmu_init(void) { union cpuid10_edx edx; union cpuid10_eax eax; unsigned int unused; unsigned int ebx; int version; if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) { switch (boot_cpu_data.x86) { case 0x6: return p6_pmu_init(); case 0xf: return p4_pmu_init(); } return -ENODEV; } /* * Check whether the Architectural PerfMon supports * Branch Misses Retired hw_event or not. */ cpuid(10, &eax.full, &ebx, &unused, &edx.full); if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED) return -ENODEV; version = eax.split.version_id; if (version < 2) x86_pmu = core_pmu; else x86_pmu = intel_pmu; x86_pmu.version = version; x86_pmu.num_counters = eax.split.num_counters; x86_pmu.cntval_bits = eax.split.bit_width; x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1; /* * Quirk: v2 perfmon does not report fixed-purpose events, so * assume at least 3 events: */ if (version > 1) x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3); /* * v2 and above have a perf capabilities MSR */ if (version > 1) { u64 capabilities; rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities); x86_pmu.intel_cap.capabilities = capabilities; } intel_ds_init(); /* * Install the hw-cache-events table: */ switch (boot_cpu_data.x86_model) { case 14: /* 65 nm core solo/duo, "Yonah" */ pr_cont("Core events, "); break; case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */ x86_pmu.quirks = intel_clovertown_quirks; case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */ case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */ case 29: /* six-core 45 nm xeon "Dunnington" */ memcpy(hw_cache_event_ids, core2_hw_cache_event_ids, sizeof(hw_cache_event_ids)); intel_pmu_lbr_init_core(); x86_pmu.event_constraints = intel_core2_event_constraints; pr_cont("Core2 events, "); break; case 26: /* 45 nm nehalem, "Bloomfield" */ case 30: /* 45 nm nehalem, "Lynnfield" */ case 46: /* 45 nm nehalem-ex, "Beckton" */ memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids, sizeof(hw_cache_event_ids)); intel_pmu_lbr_init_nhm(); x86_pmu.event_constraints = intel_nehalem_event_constraints; x86_pmu.enable_all = intel_pmu_nhm_enable_all; pr_cont("Nehalem events, "); break; case 28: /* Atom */ memcpy(hw_cache_event_ids, atom_hw_cache_event_ids, sizeof(hw_cache_event_ids)); intel_pmu_lbr_init_atom(); x86_pmu.event_constraints = intel_gen_event_constraints; pr_cont("Atom events, "); break; case 37: /* 32 nm nehalem, "Clarkdale" */ case 44: /* 32 nm nehalem, "Gulftown" */ memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids, sizeof(hw_cache_event_ids)); intel_pmu_lbr_init_nhm(); x86_pmu.event_constraints = intel_westmere_event_constraints; x86_pmu.enable_all = intel_pmu_nhm_enable_all; pr_cont("Westmere events, "); break; default: /* * default constraints for v2 and up */ x86_pmu.event_constraints = intel_gen_event_constraints; pr_cont("generic architected perfmon, "); } return 0; } #else /* CONFIG_CPU_SUP_INTEL */ static int intel_pmu_init(void) { return 0; } #endif /* CONFIG_CPU_SUP_INTEL */