/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_RESCTRL_INTERNAL_H #define _ASM_X86_RESCTRL_INTERNAL_H #include #include #include #include #include #define MSR_IA32_L3_QOS_CFG 0xc81 #define MSR_IA32_L2_QOS_CFG 0xc82 #define MSR_IA32_L3_CBM_BASE 0xc90 #define MSR_IA32_L2_CBM_BASE 0xd10 #define MSR_IA32_MBA_THRTL_BASE 0xd50 #define MSR_IA32_MBA_BW_BASE 0xc0000200 #define MSR_IA32_QM_CTR 0x0c8e #define MSR_IA32_QM_EVTSEL 0x0c8d #define L3_QOS_CDP_ENABLE 0x01ULL #define L2_QOS_CDP_ENABLE 0x01ULL #define CQM_LIMBOCHECK_INTERVAL 1000 #define MBM_CNTR_WIDTH_BASE 24 #define MBM_OVERFLOW_INTERVAL 1000 #define MAX_MBA_BW 100u #define MBA_IS_LINEAR 0x4 #define MAX_MBA_BW_AMD 0x800 #define MBM_CNTR_WIDTH_OFFSET_AMD 20 #define RMID_VAL_ERROR BIT_ULL(63) #define RMID_VAL_UNAVAIL BIT_ULL(62) /* * With the above fields in use 62 bits remain in MSR_IA32_QM_CTR for * data to be returned. The counter width is discovered from the hardware * as an offset from MBM_CNTR_WIDTH_BASE. */ #define MBM_CNTR_WIDTH_OFFSET_MAX (62 - MBM_CNTR_WIDTH_BASE) struct rdt_fs_context { struct kernfs_fs_context kfc; bool enable_cdpl2; bool enable_cdpl3; bool enable_mba_mbps; }; static inline struct rdt_fs_context *rdt_fc2context(struct fs_context *fc) { struct kernfs_fs_context *kfc = fc->fs_private; return container_of(kfc, struct rdt_fs_context, kfc); } DECLARE_STATIC_KEY_FALSE(rdt_enable_key); DECLARE_STATIC_KEY_FALSE(rdt_mon_enable_key); /** * struct mon_evt - Entry in the event list of a resource * @evtid: event id * @name: name of the event * @list: entry in &rdt_resource->evt_list */ struct mon_evt { enum resctrl_event_id evtid; char *name; struct list_head list; }; /** * union mon_data_bits - Monitoring details for each event file * @priv: Used to store monitoring event data in @u * as kernfs private data * @rid: Resource id associated with the event file * @evtid: Event id associated with the event file * @domid: The domain to which the event file belongs * @u: Name of the bit fields struct */ union mon_data_bits { void *priv; struct { unsigned int rid : 10; enum resctrl_event_id evtid : 8; unsigned int domid : 14; } u; }; struct rmid_read { struct rdtgroup *rgrp; struct rdt_resource *r; struct rdt_domain *d; enum resctrl_event_id evtid; bool first; int err; u64 val; }; extern bool rdt_alloc_capable; extern bool rdt_mon_capable; extern unsigned int rdt_mon_features; extern struct list_head resctrl_schema_all; enum rdt_group_type { RDTCTRL_GROUP = 0, RDTMON_GROUP, RDT_NUM_GROUP, }; /** * enum rdtgrp_mode - Mode of a RDT resource group * @RDT_MODE_SHAREABLE: This resource group allows sharing of its allocations * @RDT_MODE_EXCLUSIVE: No sharing of this resource group's allocations allowed * @RDT_MODE_PSEUDO_LOCKSETUP: Resource group will be used for Pseudo-Locking * @RDT_MODE_PSEUDO_LOCKED: No sharing of this resource group's allocations * allowed AND the allocations are Cache Pseudo-Locked * @RDT_NUM_MODES: Total number of modes * * The mode of a resource group enables control over the allowed overlap * between allocations associated with different resource groups (classes * of service). User is able to modify the mode of a resource group by * writing to the "mode" resctrl file associated with the resource group. * * The "shareable", "exclusive", and "pseudo-locksetup" modes are set by * writing the appropriate text to the "mode" file. A resource group enters * "pseudo-locked" mode after the schemata is written while the resource * group is in "pseudo-locksetup" mode. */ enum rdtgrp_mode { RDT_MODE_SHAREABLE = 0, RDT_MODE_EXCLUSIVE, RDT_MODE_PSEUDO_LOCKSETUP, RDT_MODE_PSEUDO_LOCKED, /* Must be last */ RDT_NUM_MODES, }; /** * struct mongroup - store mon group's data in resctrl fs. * @mon_data_kn: kernfs node for the mon_data directory * @parent: parent rdtgrp * @crdtgrp_list: child rdtgroup node list * @rmid: rmid for this rdtgroup */ struct mongroup { struct kernfs_node *mon_data_kn; struct rdtgroup *parent; struct list_head crdtgrp_list; u32 rmid; }; /** * struct pseudo_lock_region - pseudo-lock region information * @s: Resctrl schema for the resource to which this * pseudo-locked region belongs * @d: RDT domain to which this pseudo-locked region * belongs * @cbm: bitmask of the pseudo-locked region * @lock_thread_wq: waitqueue used to wait on the pseudo-locking thread * completion * @thread_done: variable used by waitqueue to test if pseudo-locking * thread completed * @cpu: core associated with the cache on which the setup code * will be run * @line_size: size of the cache lines * @size: size of pseudo-locked region in bytes * @kmem: the kernel memory associated with pseudo-locked region * @minor: minor number of character device associated with this * region * @debugfs_dir: pointer to this region's directory in the debugfs * filesystem * @pm_reqs: Power management QoS requests related to this region */ struct pseudo_lock_region { struct resctrl_schema *s; struct rdt_domain *d; u32 cbm; wait_queue_head_t lock_thread_wq; int thread_done; int cpu; unsigned int line_size; unsigned int size; void *kmem; unsigned int minor; struct dentry *debugfs_dir; struct list_head pm_reqs; }; /** * struct rdtgroup - store rdtgroup's data in resctrl file system. * @kn: kernfs node * @rdtgroup_list: linked list for all rdtgroups * @closid: closid for this rdtgroup * @cpu_mask: CPUs assigned to this rdtgroup * @flags: status bits * @waitcount: how many cpus expect to find this * group when they acquire rdtgroup_mutex * @type: indicates type of this rdtgroup - either * monitor only or ctrl_mon group * @mon: mongroup related data * @mode: mode of resource group * @plr: pseudo-locked region */ struct rdtgroup { struct kernfs_node *kn; struct list_head rdtgroup_list; u32 closid; struct cpumask cpu_mask; int flags; atomic_t waitcount; enum rdt_group_type type; struct mongroup mon; enum rdtgrp_mode mode; struct pseudo_lock_region *plr; }; /* rdtgroup.flags */ #define RDT_DELETED 1 /* rftype.flags */ #define RFTYPE_FLAGS_CPUS_LIST 1 /* * Define the file type flags for base and info directories. */ #define RFTYPE_INFO BIT(0) #define RFTYPE_BASE BIT(1) #define RF_CTRLSHIFT 4 #define RF_MONSHIFT 5 #define RF_TOPSHIFT 6 #define RFTYPE_CTRL BIT(RF_CTRLSHIFT) #define RFTYPE_MON BIT(RF_MONSHIFT) #define RFTYPE_TOP BIT(RF_TOPSHIFT) #define RFTYPE_RES_CACHE BIT(8) #define RFTYPE_RES_MB BIT(9) #define RF_CTRL_INFO (RFTYPE_INFO | RFTYPE_CTRL) #define RF_MON_INFO (RFTYPE_INFO | RFTYPE_MON) #define RF_TOP_INFO (RFTYPE_INFO | RFTYPE_TOP) #define RF_CTRL_BASE (RFTYPE_BASE | RFTYPE_CTRL) /* List of all resource groups */ extern struct list_head rdt_all_groups; extern int max_name_width, max_data_width; int __init rdtgroup_init(void); void __exit rdtgroup_exit(void); /** * struct rftype - describe each file in the resctrl file system * @name: File name * @mode: Access mode * @kf_ops: File operations * @flags: File specific RFTYPE_FLAGS_* flags * @fflags: File specific RF_* or RFTYPE_* flags * @seq_show: Show content of the file * @write: Write to the file */ struct rftype { char *name; umode_t mode; const struct kernfs_ops *kf_ops; unsigned long flags; unsigned long fflags; int (*seq_show)(struct kernfs_open_file *of, struct seq_file *sf, void *v); /* * write() is the generic write callback which maps directly to * kernfs write operation and overrides all other operations. * Maximum write size is determined by ->max_write_len. */ ssize_t (*write)(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off); }; /** * struct mbm_state - status for each MBM counter in each domain * @prev_bw_bytes: Previous bytes value read for bandwidth calculation * @prev_bw: The most recent bandwidth in MBps * @delta_bw: Difference between the current and previous bandwidth * @delta_comp: Indicates whether to compute the delta_bw */ struct mbm_state { u64 prev_bw_bytes; u32 prev_bw; u32 delta_bw; bool delta_comp; }; /** * struct arch_mbm_state - values used to compute resctrl_arch_rmid_read()s * return value. * @chunks: Total data moved (multiply by rdt_group.mon_scale to get bytes) * @prev_msr: Value of IA32_QM_CTR last time it was read for the RMID used to * find this struct. */ struct arch_mbm_state { u64 chunks; u64 prev_msr; }; /** * struct rdt_hw_domain - Arch private attributes of a set of CPUs that share * a resource * @d_resctrl: Properties exposed to the resctrl file system * @ctrl_val: array of cache or mem ctrl values (indexed by CLOSID) * @arch_mbm_total: arch private state for MBM total bandwidth * @arch_mbm_local: arch private state for MBM local bandwidth * * Members of this structure are accessed via helpers that provide abstraction. */ struct rdt_hw_domain { struct rdt_domain d_resctrl; u32 *ctrl_val; struct arch_mbm_state *arch_mbm_total; struct arch_mbm_state *arch_mbm_local; }; static inline struct rdt_hw_domain *resctrl_to_arch_dom(struct rdt_domain *r) { return container_of(r, struct rdt_hw_domain, d_resctrl); } /** * struct msr_param - set a range of MSRs from a domain * @res: The resource to use * @low: Beginning index from base MSR * @high: End index */ struct msr_param { struct rdt_resource *res; u32 low; u32 high; }; static inline bool is_llc_occupancy_enabled(void) { return (rdt_mon_features & (1 << QOS_L3_OCCUP_EVENT_ID)); } static inline bool is_mbm_total_enabled(void) { return (rdt_mon_features & (1 << QOS_L3_MBM_TOTAL_EVENT_ID)); } static inline bool is_mbm_local_enabled(void) { return (rdt_mon_features & (1 << QOS_L3_MBM_LOCAL_EVENT_ID)); } static inline bool is_mbm_enabled(void) { return (is_mbm_total_enabled() || is_mbm_local_enabled()); } static inline bool is_mbm_event(int e) { return (e >= QOS_L3_MBM_TOTAL_EVENT_ID && e <= QOS_L3_MBM_LOCAL_EVENT_ID); } struct rdt_parse_data { struct rdtgroup *rdtgrp; char *buf; }; /** * struct rdt_hw_resource - arch private attributes of a resctrl resource * @r_resctrl: Attributes of the resource used directly by resctrl. * @num_closid: Maximum number of closid this hardware can support, * regardless of CDP. This is exposed via * resctrl_arch_get_num_closid() to avoid confusion * with struct resctrl_schema's property of the same name, * which has been corrected for features like CDP. * @msr_base: Base MSR address for CBMs * @msr_update: Function pointer to update QOS MSRs * @mon_scale: cqm counter * mon_scale = occupancy in bytes * @mbm_width: Monitor width, to detect and correct for overflow. * @cdp_enabled: CDP state of this resource * * Members of this structure are either private to the architecture * e.g. mbm_width, or accessed via helpers that provide abstraction. e.g. * msr_update and msr_base. */ struct rdt_hw_resource { struct rdt_resource r_resctrl; u32 num_closid; unsigned int msr_base; void (*msr_update) (struct rdt_domain *d, struct msr_param *m, struct rdt_resource *r); unsigned int mon_scale; unsigned int mbm_width; bool cdp_enabled; }; static inline struct rdt_hw_resource *resctrl_to_arch_res(struct rdt_resource *r) { return container_of(r, struct rdt_hw_resource, r_resctrl); } int parse_cbm(struct rdt_parse_data *data, struct resctrl_schema *s, struct rdt_domain *d); int parse_bw(struct rdt_parse_data *data, struct resctrl_schema *s, struct rdt_domain *d); extern struct mutex rdtgroup_mutex; extern struct rdt_hw_resource rdt_resources_all[]; extern struct rdtgroup rdtgroup_default; DECLARE_STATIC_KEY_FALSE(rdt_alloc_enable_key); extern struct dentry *debugfs_resctrl; enum resctrl_res_level { RDT_RESOURCE_L3, RDT_RESOURCE_L2, RDT_RESOURCE_MBA, /* Must be the last */ RDT_NUM_RESOURCES, }; static inline struct rdt_resource *resctrl_inc(struct rdt_resource *res) { struct rdt_hw_resource *hw_res = resctrl_to_arch_res(res); hw_res++; return &hw_res->r_resctrl; } static inline bool resctrl_arch_get_cdp_enabled(enum resctrl_res_level l) { return rdt_resources_all[l].cdp_enabled; } int resctrl_arch_set_cdp_enabled(enum resctrl_res_level l, bool enable); /* * To return the common struct rdt_resource, which is contained in struct * rdt_hw_resource, walk the resctrl member of struct rdt_hw_resource. */ #define for_each_rdt_resource(r) \ for (r = &rdt_resources_all[0].r_resctrl; \ r <= &rdt_resources_all[RDT_NUM_RESOURCES - 1].r_resctrl; \ r = resctrl_inc(r)) #define for_each_capable_rdt_resource(r) \ for_each_rdt_resource(r) \ if (r->alloc_capable || r->mon_capable) #define for_each_alloc_capable_rdt_resource(r) \ for_each_rdt_resource(r) \ if (r->alloc_capable) #define for_each_mon_capable_rdt_resource(r) \ for_each_rdt_resource(r) \ if (r->mon_capable) /* CPUID.(EAX=10H, ECX=ResID=1).EAX */ union cpuid_0x10_1_eax { struct { unsigned int cbm_len:5; } split; unsigned int full; }; /* CPUID.(EAX=10H, ECX=ResID=3).EAX */ union cpuid_0x10_3_eax { struct { unsigned int max_delay:12; } split; unsigned int full; }; /* CPUID.(EAX=10H, ECX=ResID).EDX */ union cpuid_0x10_x_edx { struct { unsigned int cos_max:16; } split; unsigned int full; }; void rdt_last_cmd_clear(void); void rdt_last_cmd_puts(const char *s); __printf(1, 2) void rdt_last_cmd_printf(const char *fmt, ...); void rdt_ctrl_update(void *arg); struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn); void rdtgroup_kn_unlock(struct kernfs_node *kn); int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name); int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name, umode_t mask); struct rdt_domain *rdt_find_domain(struct rdt_resource *r, int id, struct list_head **pos); ssize_t rdtgroup_schemata_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off); int rdtgroup_schemata_show(struct kernfs_open_file *of, struct seq_file *s, void *v); bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_domain *d, unsigned long cbm, int closid, bool exclusive); unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r, struct rdt_domain *d, unsigned long cbm); enum rdtgrp_mode rdtgroup_mode_by_closid(int closid); int rdtgroup_tasks_assigned(struct rdtgroup *r); int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp); int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp); bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_domain *d, unsigned long cbm); bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_domain *d); int rdt_pseudo_lock_init(void); void rdt_pseudo_lock_release(void); int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp); void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp); struct rdt_domain *get_domain_from_cpu(int cpu, struct rdt_resource *r); int closids_supported(void); void closid_free(int closid); int alloc_rmid(void); void free_rmid(u32 rmid); int rdt_get_mon_l3_config(struct rdt_resource *r); void mon_event_count(void *info); int rdtgroup_mondata_show(struct seq_file *m, void *arg); void mon_event_read(struct rmid_read *rr, struct rdt_resource *r, struct rdt_domain *d, struct rdtgroup *rdtgrp, int evtid, int first); void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms); void mbm_handle_overflow(struct work_struct *work); void __init intel_rdt_mbm_apply_quirk(void); bool is_mba_sc(struct rdt_resource *r); void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms); void cqm_handle_limbo(struct work_struct *work); bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d); void __check_limbo(struct rdt_domain *d, bool force_free); void rdt_domain_reconfigure_cdp(struct rdt_resource *r); void __init thread_throttle_mode_init(void); #endif /* _ASM_X86_RESCTRL_INTERNAL_H */