/* * Debug Store support * * This provides a low-level interface to the hardware's Debug Store * feature that is used for branch trace store (BTS) and * precise-event based sampling (PEBS). * * It manages: * - DS and BTS hardware configuration * - buffer overflow handling (to be done) * - buffer access * * It does not do: * - security checking (is the caller allowed to trace the task) * - buffer allocation (memory accounting) * * * Copyright (C) 2007-2008 Intel Corporation. * Markus Metzger , 2007-2008 */ #include #include #include #include #include #include #include /* * The configuration for a particular DS hardware implementation. */ struct ds_configuration { /* the name of the configuration */ const char *name; /* the size of one pointer-typed field in the DS structure and in the BTS and PEBS buffers in bytes; this covers the first 8 DS fields related to buffer management. */ unsigned char sizeof_field; /* the size of a BTS/PEBS record in bytes */ unsigned char sizeof_rec[2]; /* a series of bit-masks to control various features indexed * by enum ds_feature */ unsigned long ctl[dsf_ctl_max]; }; static DEFINE_PER_CPU(struct ds_configuration, ds_cfg_array); #define ds_cfg per_cpu(ds_cfg_array, smp_processor_id()) #define MAX_SIZEOF_DS (12 * 8) /* maximal size of a DS configuration */ #define MAX_SIZEOF_BTS (3 * 8) /* maximal size of a BTS record */ #define DS_ALIGNMENT (1 << 3) /* BTS and PEBS buffer alignment */ #define BTS_CONTROL \ (ds_cfg.ctl[dsf_bts] | ds_cfg.ctl[dsf_bts_kernel] | ds_cfg.ctl[dsf_bts_user] |\ ds_cfg.ctl[dsf_bts_overflow]) /* * A BTS or PEBS tracer. * * This holds the configuration of the tracer and serves as a handle * to identify tracers. */ struct ds_tracer { /* the DS context (partially) owned by this tracer */ struct ds_context *context; /* the buffer provided on ds_request() and its size in bytes */ void *buffer; size_t size; }; struct bts_tracer { /* the common DS part */ struct ds_tracer ds; /* the trace including the DS configuration */ struct bts_trace trace; /* buffer overflow notification function */ bts_ovfl_callback_t ovfl; }; struct pebs_tracer { /* the common DS part */ struct ds_tracer ds; /* the trace including the DS configuration */ struct pebs_trace trace; /* buffer overflow notification function */ pebs_ovfl_callback_t ovfl; }; /* * Debug Store (DS) save area configuration (see Intel64 and IA32 * Architectures Software Developer's Manual, section 18.5) * * The DS configuration consists of the following fields; different * architetures vary in the size of those fields. * - double-word aligned base linear address of the BTS buffer * - write pointer into the BTS buffer * - end linear address of the BTS buffer (one byte beyond the end of * the buffer) * - interrupt pointer into BTS buffer * (interrupt occurs when write pointer passes interrupt pointer) * - double-word aligned base linear address of the PEBS buffer * - write pointer into the PEBS buffer * - end linear address of the PEBS buffer (one byte beyond the end of * the buffer) * - interrupt pointer into PEBS buffer * (interrupt occurs when write pointer passes interrupt pointer) * - value to which counter is reset following counter overflow * * Later architectures use 64bit pointers throughout, whereas earlier * architectures use 32bit pointers in 32bit mode. * * * We compute the base address for the first 8 fields based on: * - the field size stored in the DS configuration * - the relative field position * - an offset giving the start of the respective region * * This offset is further used to index various arrays holding * information for BTS and PEBS at the respective index. * * On later 32bit processors, we only access the lower 32bit of the * 64bit pointer fields. The upper halves will be zeroed out. */ enum ds_field { ds_buffer_base = 0, ds_index, ds_absolute_maximum, ds_interrupt_threshold, }; enum ds_qualifier { ds_bts = 0, ds_pebs }; static inline unsigned long ds_get(const unsigned char *base, enum ds_qualifier qual, enum ds_field field) { base += (ds_cfg.sizeof_field * (field + (4 * qual))); return *(unsigned long *)base; } static inline void ds_set(unsigned char *base, enum ds_qualifier qual, enum ds_field field, unsigned long value) { base += (ds_cfg.sizeof_field * (field + (4 * qual))); (*(unsigned long *)base) = value; } /* * Locking is done only for allocating BTS or PEBS resources. */ static DEFINE_SPINLOCK(ds_lock); /* * We either support (system-wide) per-cpu or per-thread allocation. * We distinguish the two based on the task_struct pointer, where a * NULL pointer indicates per-cpu allocation for the current cpu. * * Allocations are use-counted. As soon as resources are allocated, * further allocations must be of the same type (per-cpu or * per-thread). We model this by counting allocations (i.e. the number * of tracers of a certain type) for one type negatively: * =0 no tracers * >0 number of per-thread tracers * <0 number of per-cpu tracers * * Tracers essentially gives the number of ds contexts for a certain * type of allocation. */ static atomic_t tracers = ATOMIC_INIT(0); static inline void get_tracer(struct task_struct *task) { if (task) atomic_inc(&tracers); else atomic_dec(&tracers); } static inline void put_tracer(struct task_struct *task) { if (task) atomic_dec(&tracers); else atomic_inc(&tracers); } static inline int check_tracer(struct task_struct *task) { return task ? (atomic_read(&tracers) >= 0) : (atomic_read(&tracers) <= 0); } /* * The DS context is either attached to a thread or to a cpu: * - in the former case, the thread_struct contains a pointer to the * attached context. * - in the latter case, we use a static array of per-cpu context * pointers. * * Contexts are use-counted. They are allocated on first access and * deallocated when the last user puts the context. */ struct ds_context { /* pointer to the DS configuration; goes into MSR_IA32_DS_AREA */ unsigned char ds[MAX_SIZEOF_DS]; /* the owner of the BTS and PEBS configuration, respectively */ struct bts_tracer *bts_master; struct pebs_tracer *pebs_master; /* use count */ unsigned long count; /* a pointer to the context location inside the thread_struct * or the per_cpu context array */ struct ds_context **this; /* a pointer to the task owning this context, or NULL, if the * context is owned by a cpu */ struct task_struct *task; }; static DEFINE_PER_CPU(struct ds_context *, system_context_array); #define system_context per_cpu(system_context_array, smp_processor_id()) static inline struct ds_context *ds_get_context(struct task_struct *task) { struct ds_context **p_context = (task ? &task->thread.ds_ctx : &system_context); struct ds_context *context = NULL; struct ds_context *new_context = NULL; unsigned long irq; /* Chances are small that we already have a context. */ new_context = kzalloc(sizeof(*new_context), GFP_KERNEL); if (!new_context) return NULL; spin_lock_irqsave(&ds_lock, irq); context = *p_context; if (!context) { context = new_context; context->this = p_context; context->task = task; context->count = 0; if (task) set_tsk_thread_flag(task, TIF_DS_AREA_MSR); if (!task || (task == current)) wrmsrl(MSR_IA32_DS_AREA, (unsigned long)context->ds); *p_context = context; } context->count++; spin_unlock_irqrestore(&ds_lock, irq); if (context != new_context) kfree(new_context); return context; } static inline void ds_put_context(struct ds_context *context) { unsigned long irq; if (!context) return; spin_lock_irqsave(&ds_lock, irq); if (--context->count) { spin_unlock_irqrestore(&ds_lock, irq); return; } *(context->this) = NULL; if (context->task) clear_tsk_thread_flag(context->task, TIF_DS_AREA_MSR); if (!context->task || (context->task == current)) wrmsrl(MSR_IA32_DS_AREA, 0); spin_unlock_irqrestore(&ds_lock, irq); kfree(context); } /* * Call the tracer's callback on a buffer overflow. * * context: the ds context * qual: the buffer type */ static void ds_overflow(struct ds_context *context, enum ds_qualifier qual) { switch (qual) { case ds_bts: if (context->bts_master && context->bts_master->ovfl) context->bts_master->ovfl(context->bts_master); break; case ds_pebs: if (context->pebs_master && context->pebs_master->ovfl) context->pebs_master->ovfl(context->pebs_master); break; } } /* * Write raw data into the BTS or PEBS buffer. * * The remainder of any partially written record is zeroed out. * * context: the DS context * qual: the buffer type * record: the data to write * size: the size of the data */ static int ds_write(struct ds_context *context, enum ds_qualifier qual, const void *record, size_t size) { int bytes_written = 0; if (!record) return -EINVAL; while (size) { unsigned long base, index, end, write_end, int_th; unsigned long write_size, adj_write_size; /* * write as much as possible without producing an * overflow interrupt. * * interrupt_threshold must either be * - bigger than absolute_maximum or * - point to a record between buffer_base and absolute_maximum * * index points to a valid record. */ base = ds_get(context->ds, qual, ds_buffer_base); index = ds_get(context->ds, qual, ds_index); end = ds_get(context->ds, qual, ds_absolute_maximum); int_th = ds_get(context->ds, qual, ds_interrupt_threshold); write_end = min(end, int_th); /* if we are already beyond the interrupt threshold, * we fill the entire buffer */ if (write_end <= index) write_end = end; if (write_end <= index) break; write_size = min((unsigned long) size, write_end - index); memcpy((void *)index, record, write_size); record = (const char *)record + write_size; size -= write_size; bytes_written += write_size; adj_write_size = write_size / ds_cfg.sizeof_rec[qual]; adj_write_size *= ds_cfg.sizeof_rec[qual]; /* zero out trailing bytes */ memset((char *)index + write_size, 0, adj_write_size - write_size); index += adj_write_size; if (index >= end) index = base; ds_set(context->ds, qual, ds_index, index); if (index >= int_th) ds_overflow(context, qual); } return bytes_written; } /* * Branch Trace Store (BTS) uses the following format. Different * architectures vary in the size of those fields. * - source linear address * - destination linear address * - flags * * Later architectures use 64bit pointers throughout, whereas earlier * architectures use 32bit pointers in 32bit mode. * * We compute the base address for the first 8 fields based on: * - the field size stored in the DS configuration * - the relative field position * * In order to store additional information in the BTS buffer, we use * a special source address to indicate that the record requires * special interpretation. * * Netburst indicated via a bit in the flags field whether the branch * was predicted; this is ignored. * * We use two levels of abstraction: * - the raw data level defined here * - an arch-independent level defined in ds.h */ enum bts_field { bts_from, bts_to, bts_flags, bts_qual = bts_from, bts_jiffies = bts_to, bts_pid = bts_flags, bts_qual_mask = (bts_qual_max - 1), bts_escape = ((unsigned long)-1 & ~bts_qual_mask) }; static inline unsigned long bts_get(const char *base, enum bts_field field) { base += (ds_cfg.sizeof_field * field); return *(unsigned long *)base; } static inline void bts_set(char *base, enum bts_field field, unsigned long val) { base += (ds_cfg.sizeof_field * field);; (*(unsigned long *)base) = val; } /* * The raw BTS data is architecture dependent. * * For higher-level users, we give an arch-independent view. * - ds.h defines struct bts_struct * - bts_read translates one raw bts record into a bts_struct * - bts_write translates one bts_struct into the raw format and * writes it into the top of the parameter tracer's buffer. * * return: bytes read/written on success; -Eerrno, otherwise */ static int bts_read(struct bts_tracer *tracer, const void *at, struct bts_struct *out) { if (!tracer) return -EINVAL; if (at < tracer->trace.ds.begin) return -EINVAL; if (tracer->trace.ds.end < (at + tracer->trace.ds.size)) return -EINVAL; memset(out, 0, sizeof(*out)); if ((bts_get(at, bts_qual) & ~bts_qual_mask) == bts_escape) { out->qualifier = (bts_get(at, bts_qual) & bts_qual_mask); out->variant.timestamp.jiffies = bts_get(at, bts_jiffies); out->variant.timestamp.pid = bts_get(at, bts_pid); } else { out->qualifier = bts_branch; out->variant.lbr.from = bts_get(at, bts_from); out->variant.lbr.to = bts_get(at, bts_to); if (!out->variant.lbr.from && !out->variant.lbr.to) out->qualifier = bts_invalid; } return ds_cfg.sizeof_rec[ds_bts]; } static int bts_write(struct bts_tracer *tracer, const struct bts_struct *in) { unsigned char raw[MAX_SIZEOF_BTS]; if (!tracer) return -EINVAL; if (MAX_SIZEOF_BTS < ds_cfg.sizeof_rec[ds_bts]) return -EOVERFLOW; switch (in->qualifier) { case bts_invalid: bts_set(raw, bts_from, 0); bts_set(raw, bts_to, 0); bts_set(raw, bts_flags, 0); break; case bts_branch: bts_set(raw, bts_from, in->variant.lbr.from); bts_set(raw, bts_to, in->variant.lbr.to); bts_set(raw, bts_flags, 0); break; case bts_task_arrives: case bts_task_departs: bts_set(raw, bts_qual, (bts_escape | in->qualifier)); bts_set(raw, bts_jiffies, in->variant.timestamp.jiffies); bts_set(raw, bts_pid, in->variant.timestamp.pid); break; default: return -EINVAL; } return ds_write(tracer->ds.context, ds_bts, raw, ds_cfg.sizeof_rec[ds_bts]); } static void ds_write_config(struct ds_context *context, struct ds_trace *cfg, enum ds_qualifier qual) { unsigned char *ds = context->ds; ds_set(ds, qual, ds_buffer_base, (unsigned long)cfg->begin); ds_set(ds, qual, ds_index, (unsigned long)cfg->top); ds_set(ds, qual, ds_absolute_maximum, (unsigned long)cfg->end); ds_set(ds, qual, ds_interrupt_threshold, (unsigned long)cfg->ith); } static void ds_read_config(struct ds_context *context, struct ds_trace *cfg, enum ds_qualifier qual) { unsigned char *ds = context->ds; cfg->begin = (void *)ds_get(ds, qual, ds_buffer_base); cfg->top = (void *)ds_get(ds, qual, ds_index); cfg->end = (void *)ds_get(ds, qual, ds_absolute_maximum); cfg->ith = (void *)ds_get(ds, qual, ds_interrupt_threshold); } static void ds_init_ds_trace(struct ds_trace *trace, enum ds_qualifier qual, void *base, size_t size, size_t ith, unsigned int flags) { unsigned long buffer, adj; /* adjust the buffer address and size to meet alignment * constraints: * - buffer is double-word aligned * - size is multiple of record size * * We checked the size at the very beginning; we have enough * space to do the adjustment. */ buffer = (unsigned long)base; adj = ALIGN(buffer, DS_ALIGNMENT) - buffer; buffer += adj; size -= adj; trace->n = size / ds_cfg.sizeof_rec[qual]; trace->size = ds_cfg.sizeof_rec[qual]; size = (trace->n * trace->size); trace->begin = (void *)buffer; trace->top = trace->begin; trace->end = (void *)(buffer + size); /* The value for 'no threshold' is -1, which will set the * threshold outside of the buffer, just like we want it. */ trace->ith = (void *)(buffer + size - ith); trace->flags = flags; } static int ds_request(struct ds_tracer *tracer, struct ds_trace *trace, enum ds_qualifier qual, struct task_struct *task, void *base, size_t size, size_t th, unsigned int flags) { struct ds_context *context; int error; error = -EINVAL; if (!base) goto out; /* we require some space to do alignment adjustments below */ error = -EINVAL; if (size < (DS_ALIGNMENT + ds_cfg.sizeof_rec[qual])) goto out; if (th != (size_t)-1) { th *= ds_cfg.sizeof_rec[qual]; error = -EINVAL; if (size <= th) goto out; } tracer->buffer = base; tracer->size = size; error = -ENOMEM; context = ds_get_context(task); if (!context) goto out; tracer->context = context; ds_init_ds_trace(trace, qual, base, size, th, flags); error = 0; out: return error; } struct bts_tracer *ds_request_bts(struct task_struct *task, void *base, size_t size, bts_ovfl_callback_t ovfl, size_t th, unsigned int flags) { struct bts_tracer *tracer; unsigned long irq; int error; error = -EOPNOTSUPP; if (!ds_cfg.ctl[dsf_bts]) goto out; /* buffer overflow notification is not yet implemented */ error = -EOPNOTSUPP; if (ovfl) goto out; error = -ENOMEM; tracer = kzalloc(sizeof(*tracer), GFP_KERNEL); if (!tracer) goto out; tracer->ovfl = ovfl; error = ds_request(&tracer->ds, &tracer->trace.ds, ds_bts, task, base, size, th, flags); if (error < 0) goto out_tracer; spin_lock_irqsave(&ds_lock, irq); error = -EPERM; if (!check_tracer(task)) goto out_unlock; get_tracer(task); error = -EPERM; if (tracer->ds.context->bts_master) goto out_put_tracer; tracer->ds.context->bts_master = tracer; spin_unlock_irqrestore(&ds_lock, irq); tracer->trace.read = bts_read; tracer->trace.write = bts_write; ds_write_config(tracer->ds.context, &tracer->trace.ds, ds_bts); ds_resume_bts(tracer); return tracer; out_put_tracer: put_tracer(task); out_unlock: spin_unlock_irqrestore(&ds_lock, irq); ds_put_context(tracer->ds.context); out_tracer: kfree(tracer); out: return ERR_PTR(error); } struct pebs_tracer *ds_request_pebs(struct task_struct *task, void *base, size_t size, pebs_ovfl_callback_t ovfl, size_t th, unsigned int flags) { struct pebs_tracer *tracer; unsigned long irq; int error; /* buffer overflow notification is not yet implemented */ error = -EOPNOTSUPP; if (ovfl) goto out; error = -ENOMEM; tracer = kzalloc(sizeof(*tracer), GFP_KERNEL); if (!tracer) goto out; tracer->ovfl = ovfl; error = ds_request(&tracer->ds, &tracer->trace.ds, ds_pebs, task, base, size, th, flags); if (error < 0) goto out_tracer; spin_lock_irqsave(&ds_lock, irq); error = -EPERM; if (!check_tracer(task)) goto out_unlock; get_tracer(task); error = -EPERM; if (tracer->ds.context->pebs_master) goto out_put_tracer; tracer->ds.context->pebs_master = tracer; spin_unlock_irqrestore(&ds_lock, irq); ds_write_config(tracer->ds.context, &tracer->trace.ds, ds_bts); ds_resume_pebs(tracer); return tracer; out_put_tracer: put_tracer(task); out_unlock: spin_unlock_irqrestore(&ds_lock, irq); ds_put_context(tracer->ds.context); out_tracer: kfree(tracer); out: return ERR_PTR(error); } void ds_release_bts(struct bts_tracer *tracer) { if (!tracer) return; ds_suspend_bts(tracer); WARN_ON_ONCE(tracer->ds.context->bts_master != tracer); tracer->ds.context->bts_master = NULL; put_tracer(tracer->ds.context->task); ds_put_context(tracer->ds.context); kfree(tracer); } void ds_suspend_bts(struct bts_tracer *tracer) { struct task_struct *task; if (!tracer) return; task = tracer->ds.context->task; if (!task || (task == current)) update_debugctlmsr(get_debugctlmsr() & ~BTS_CONTROL); if (task) { task->thread.debugctlmsr &= ~BTS_CONTROL; if (!task->thread.debugctlmsr) clear_tsk_thread_flag(task, TIF_DEBUGCTLMSR); } } void ds_resume_bts(struct bts_tracer *tracer) { struct task_struct *task; unsigned long control; if (!tracer) return; task = tracer->ds.context->task; control = ds_cfg.ctl[dsf_bts]; if (!(tracer->trace.ds.flags & BTS_KERNEL)) control |= ds_cfg.ctl[dsf_bts_kernel]; if (!(tracer->trace.ds.flags & BTS_USER)) control |= ds_cfg.ctl[dsf_bts_user]; if (task) { task->thread.debugctlmsr |= control; set_tsk_thread_flag(task, TIF_DEBUGCTLMSR); } if (!task || (task == current)) update_debugctlmsr(get_debugctlmsr() | control); } void ds_release_pebs(struct pebs_tracer *tracer) { if (!tracer) return; ds_suspend_pebs(tracer); WARN_ON_ONCE(tracer->ds.context->pebs_master != tracer); tracer->ds.context->pebs_master = NULL; put_tracer(tracer->ds.context->task); ds_put_context(tracer->ds.context); kfree(tracer); } void ds_suspend_pebs(struct pebs_tracer *tracer) { } void ds_resume_pebs(struct pebs_tracer *tracer) { } const struct bts_trace *ds_read_bts(struct bts_tracer *tracer) { if (!tracer) return NULL; ds_read_config(tracer->ds.context, &tracer->trace.ds, ds_bts); return &tracer->trace; } const struct pebs_trace *ds_read_pebs(struct pebs_tracer *tracer) { if (!tracer) return NULL; ds_read_config(tracer->ds.context, &tracer->trace.ds, ds_pebs); tracer->trace.reset_value = *(u64 *)(tracer->ds.context->ds + (ds_cfg.sizeof_field * 8)); return &tracer->trace; } int ds_reset_bts(struct bts_tracer *tracer) { if (!tracer) return -EINVAL; tracer->trace.ds.top = tracer->trace.ds.begin; ds_set(tracer->ds.context->ds, ds_bts, ds_index, (unsigned long)tracer->trace.ds.top); return 0; } int ds_reset_pebs(struct pebs_tracer *tracer) { if (!tracer) return -EINVAL; tracer->trace.ds.top = tracer->trace.ds.begin; ds_set(tracer->ds.context->ds, ds_bts, ds_index, (unsigned long)tracer->trace.ds.top); return 0; } int ds_set_pebs_reset(struct pebs_tracer *tracer, u64 value) { if (!tracer) return -EINVAL; *(u64 *)(tracer->ds.context->ds + (ds_cfg.sizeof_field * 8)) = value; return 0; } static const struct ds_configuration ds_cfg_netburst = { .name = "netburst", .ctl[dsf_bts] = (1 << 2) | (1 << 3), .ctl[dsf_bts_kernel] = (1 << 5), .ctl[dsf_bts_user] = (1 << 6), .sizeof_field = sizeof(long), .sizeof_rec[ds_bts] = sizeof(long) * 3, #ifdef __i386__ .sizeof_rec[ds_pebs] = sizeof(long) * 10, #else .sizeof_rec[ds_pebs] = sizeof(long) * 18, #endif }; static const struct ds_configuration ds_cfg_pentium_m = { .name = "pentium m", .ctl[dsf_bts] = (1 << 6) | (1 << 7), .sizeof_field = sizeof(long), .sizeof_rec[ds_bts] = sizeof(long) * 3, #ifdef __i386__ .sizeof_rec[ds_pebs] = sizeof(long) * 10, #else .sizeof_rec[ds_pebs] = sizeof(long) * 18, #endif }; static const struct ds_configuration ds_cfg_core2 = { .name = "core 2", .ctl[dsf_bts] = (1 << 6) | (1 << 7), .ctl[dsf_bts_kernel] = (1 << 9), .ctl[dsf_bts_user] = (1 << 10), .sizeof_field = 8, .sizeof_rec[ds_bts] = 8 * 3, .sizeof_rec[ds_pebs] = 8 * 18, }; static void ds_configure(const struct ds_configuration *cfg) { memset(&ds_cfg, 0, sizeof(ds_cfg)); ds_cfg = *cfg; printk(KERN_INFO "[ds] using %s configuration\n", ds_cfg.name); if (!cpu_has_bts) { ds_cfg.ctl[dsf_bts] = 0; printk(KERN_INFO "[ds] bts not available\n"); } if (!cpu_has_pebs) printk(KERN_INFO "[ds] pebs not available\n"); WARN_ON_ONCE(MAX_SIZEOF_DS < (12 * ds_cfg.sizeof_field)); } void __cpuinit ds_init_intel(struct cpuinfo_x86 *c) { switch (c->x86) { case 0x6: switch (c->x86_model) { case 0 ... 0xC: /* sorry, don't know about them */ break; case 0xD: case 0xE: /* Pentium M */ ds_configure(&ds_cfg_pentium_m); break; default: /* Core2, Atom, ... */ ds_configure(&ds_cfg_core2); break; } break; case 0xF: switch (c->x86_model) { case 0x0: case 0x1: case 0x2: /* Netburst */ ds_configure(&ds_cfg_netburst); break; default: /* sorry, don't know about them */ break; } break; default: /* sorry, don't know about them */ break; } } /* * Change the DS configuration from tracing prev to tracing next. */ void ds_switch_to(struct task_struct *prev, struct task_struct *next) { struct ds_context *prev_ctx = prev->thread.ds_ctx; struct ds_context *next_ctx = next->thread.ds_ctx; if (prev_ctx) { update_debugctlmsr(0); if (prev_ctx->bts_master && (prev_ctx->bts_master->trace.ds.flags & BTS_TIMESTAMPS)) { struct bts_struct ts = { .qualifier = bts_task_departs, .variant.timestamp.jiffies = jiffies_64, .variant.timestamp.pid = prev->pid }; bts_write(prev_ctx->bts_master, &ts); } } if (next_ctx) { if (next_ctx->bts_master && (next_ctx->bts_master->trace.ds.flags & BTS_TIMESTAMPS)) { struct bts_struct ts = { .qualifier = bts_task_arrives, .variant.timestamp.jiffies = jiffies_64, .variant.timestamp.pid = next->pid }; bts_write(next_ctx->bts_master, &ts); } wrmsrl(MSR_IA32_DS_AREA, (unsigned long)next_ctx->ds); } update_debugctlmsr(next->thread.debugctlmsr); } void ds_copy_thread(struct task_struct *tsk, struct task_struct *father) { clear_tsk_thread_flag(tsk, TIF_DS_AREA_MSR); tsk->thread.ds_ctx = NULL; } void ds_exit_thread(struct task_struct *tsk) { WARN_ON(tsk->thread.ds_ctx); }