/* * AMD CPU Microcode Update Driver for Linux * Copyright (C) 2008 Advanced Micro Devices Inc. * * Author: Peter Oruba * * Based on work by: * Tigran Aivazian * * This driver allows to upgrade microcode on AMD * family 0x10 and 0x11 processors. * * Licensed unter the terms of the GNU General Public * License version 2. See file COPYING for details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_DESCRIPTION("AMD Microcode Update Driver"); MODULE_AUTHOR("Peter Oruba"); MODULE_LICENSE("GPL v2"); #define UCODE_MAGIC 0x00414d44 #define UCODE_EQUIV_CPU_TABLE_TYPE 0x00000000 #define UCODE_UCODE_TYPE 0x00000001 struct equiv_cpu_entry { unsigned int installed_cpu; unsigned int fixed_errata_mask; unsigned int fixed_errata_compare; unsigned int equiv_cpu; }; struct microcode_header_amd { unsigned int data_code; unsigned int patch_id; unsigned char mc_patch_data_id[2]; unsigned char mc_patch_data_len; unsigned char init_flag; unsigned int mc_patch_data_checksum; unsigned int nb_dev_id; unsigned int sb_dev_id; unsigned char processor_rev_id[2]; unsigned char nb_rev_id; unsigned char sb_rev_id; unsigned char bios_api_rev; unsigned char reserved1[3]; unsigned int match_reg[8]; }; struct microcode_amd { struct microcode_header_amd hdr; unsigned int mpb[0]; }; #define UCODE_MAX_SIZE (2048) #define DEFAULT_UCODE_DATASIZE (896) #define MC_HEADER_SIZE (sizeof(struct microcode_header_amd)) #define DEFAULT_UCODE_TOTALSIZE (DEFAULT_UCODE_DATASIZE + MC_HEADER_SIZE) #define DWSIZE (sizeof(u32)) /* For now we support a fixed ucode total size only */ #define get_totalsize(mc) \ ((((struct microcode_amd *)mc)->hdr.mc_patch_data_len * 28) \ + MC_HEADER_SIZE) /* serialize access to the physical write */ static DEFINE_SPINLOCK(microcode_update_lock); static struct equiv_cpu_entry *equiv_cpu_table; static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig) { struct cpuinfo_x86 *c = &cpu_data(cpu); memset(csig, 0, sizeof(*csig)); if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) { printk(KERN_ERR "microcode: CPU%d not a capable AMD processor\n", cpu); return -1; } asm volatile("movl %1, %%ecx; rdmsr" : "=a" (csig->rev) : "i" (0x0000008B) : "ecx"); printk(KERN_INFO "microcode: collect_cpu_info_amd : patch_id=0x%x\n", csig->rev); return 0; } static int get_matching_microcode(int cpu, void *mc, int rev) { struct microcode_header_amd *mc_header = mc; struct pci_dev *nb_pci_dev, *sb_pci_dev; unsigned int current_cpu_id; unsigned int equiv_cpu_id = 0x00; unsigned int i = 0; BUG_ON(equiv_cpu_table == NULL); current_cpu_id = cpuid_eax(0x00000001); while (equiv_cpu_table[i].installed_cpu != 0) { if (current_cpu_id == equiv_cpu_table[i].installed_cpu) { equiv_cpu_id = equiv_cpu_table[i].equiv_cpu; break; } i++; } if (!equiv_cpu_id) { printk(KERN_ERR "microcode: CPU%d cpu_id " "not found in equivalent cpu table \n", cpu); return 0; } if ((mc_header->processor_rev_id[0]) != (equiv_cpu_id & 0xff)) { printk(KERN_ERR "microcode: CPU%d patch does not match " "(patch is %x, cpu extended is %x) \n", cpu, mc_header->processor_rev_id[0], (equiv_cpu_id & 0xff)); return 0; } if ((mc_header->processor_rev_id[1]) != ((equiv_cpu_id >> 16) & 0xff)) { printk(KERN_ERR "microcode: CPU%d patch does not match " "(patch is %x, cpu base id is %x) \n", cpu, mc_header->processor_rev_id[1], ((equiv_cpu_id >> 16) & 0xff)); return 0; } /* ucode may be northbridge specific */ if (mc_header->nb_dev_id) { nb_pci_dev = pci_get_device(PCI_VENDOR_ID_AMD, (mc_header->nb_dev_id & 0xff), NULL); if ((!nb_pci_dev) || (mc_header->nb_rev_id != nb_pci_dev->revision)) { printk(KERN_ERR "microcode: CPU%d NB mismatch \n", cpu); pci_dev_put(nb_pci_dev); return 0; } pci_dev_put(nb_pci_dev); } /* ucode may be southbridge specific */ if (mc_header->sb_dev_id) { sb_pci_dev = pci_get_device(PCI_VENDOR_ID_AMD, (mc_header->sb_dev_id & 0xff), NULL); if ((!sb_pci_dev) || (mc_header->sb_rev_id != sb_pci_dev->revision)) { printk(KERN_ERR "microcode: CPU%d SB mismatch \n", cpu); pci_dev_put(sb_pci_dev); return 0; } pci_dev_put(sb_pci_dev); } if (mc_header->patch_id <= rev) return 0; return 1; } static void apply_microcode_amd(int cpu) { unsigned long flags; unsigned int eax, edx; unsigned int rev; int cpu_num = raw_smp_processor_id(); struct ucode_cpu_info *uci = ucode_cpu_info + cpu_num; struct microcode_amd *mc_amd = uci->mc; unsigned long addr; /* We should bind the task to the CPU */ BUG_ON(cpu_num != cpu); if (mc_amd == NULL) return; spin_lock_irqsave(µcode_update_lock, flags); addr = (unsigned long)&mc_amd->hdr.data_code; edx = (unsigned int)(((unsigned long)upper_32_bits(addr))); eax = (unsigned int)(((unsigned long)lower_32_bits(addr))); asm volatile("movl %0, %%ecx; wrmsr" : : "i" (0xc0010020), "a" (eax), "d" (edx) : "ecx"); /* get patch id after patching */ asm volatile("movl %1, %%ecx; rdmsr" : "=a" (rev) : "i" (0x0000008B) : "ecx"); spin_unlock_irqrestore(µcode_update_lock, flags); /* check current patch id and patch's id for match */ if (rev != mc_amd->hdr.patch_id) { printk(KERN_ERR "microcode: CPU%d update from revision " "0x%x to 0x%x failed\n", cpu_num, mc_amd->hdr.patch_id, rev); return; } printk(KERN_INFO "microcode: CPU%d updated from revision " "0x%x to 0x%x \n", cpu_num, uci->cpu_sig.rev, mc_amd->hdr.patch_id); uci->cpu_sig.rev = rev; } static void * get_next_ucode(u8 *buf, unsigned int size, int (*get_ucode_data)(void *, const void *, size_t), unsigned int *mc_size) { unsigned int total_size; #define UCODE_CONTAINER_SECTION_HDR 8 u8 section_hdr[UCODE_CONTAINER_SECTION_HDR]; void *mc; if (get_ucode_data(section_hdr, buf, UCODE_CONTAINER_SECTION_HDR)) return NULL; if (section_hdr[0] != UCODE_UCODE_TYPE) { printk(KERN_ERR "microcode: error! " "Wrong microcode payload type field\n"); return NULL; } total_size = (unsigned long) (section_hdr[4] + (section_hdr[5] << 8)); printk(KERN_INFO "microcode: size %u, total_size %u\n", size, total_size); if (total_size > size || total_size > UCODE_MAX_SIZE) { printk(KERN_ERR "microcode: error! Bad data in microcode data file\n"); return NULL; } mc = vmalloc(UCODE_MAX_SIZE); if (mc) { memset(mc, 0, UCODE_MAX_SIZE); if (get_ucode_data(mc, buf + UCODE_CONTAINER_SECTION_HDR, total_size)) { vfree(mc); mc = NULL; } else *mc_size = total_size + UCODE_CONTAINER_SECTION_HDR; } #undef UCODE_CONTAINER_SECTION_HDR return mc; } static int install_equiv_cpu_table(u8 *buf, int (*get_ucode_data)(void *, const void *, size_t)) { #define UCODE_CONTAINER_HEADER_SIZE 12 u8 *container_hdr[UCODE_CONTAINER_HEADER_SIZE]; unsigned int *buf_pos = (unsigned int *)container_hdr; unsigned long size; if (get_ucode_data(&container_hdr, buf, UCODE_CONTAINER_HEADER_SIZE)) return 0; size = buf_pos[2]; if (buf_pos[1] != UCODE_EQUIV_CPU_TABLE_TYPE || !size) { printk(KERN_ERR "microcode: error! " "Wrong microcode equivalnet cpu table\n"); return 0; } equiv_cpu_table = (struct equiv_cpu_entry *) vmalloc(size); if (!equiv_cpu_table) { printk(KERN_ERR "microcode: error, can't allocate memory for equiv CPU table\n"); return 0; } buf += UCODE_CONTAINER_HEADER_SIZE; if (get_ucode_data(equiv_cpu_table, buf, size)) { vfree(equiv_cpu_table); return 0; } return size + UCODE_CONTAINER_HEADER_SIZE; /* add header length */ #undef UCODE_CONTAINER_HEADER_SIZE } static void free_equiv_cpu_table(void) { if (equiv_cpu_table) { vfree(equiv_cpu_table); equiv_cpu_table = NULL; } } static int generic_load_microcode(int cpu, void *data, size_t size, int (*get_ucode_data)(void *, const void *, size_t)) { struct ucode_cpu_info *uci = ucode_cpu_info + cpu; u8 *ucode_ptr = data, *new_mc = NULL, *mc; int new_rev = uci->cpu_sig.rev; unsigned int leftover; unsigned long offset; offset = install_equiv_cpu_table(ucode_ptr, get_ucode_data); if (!offset) { printk(KERN_ERR "microcode: installing equivalent cpu table failed\n"); return -EINVAL; } ucode_ptr += offset; leftover = size - offset; while (leftover) { unsigned int uninitialized_var(mc_size); struct microcode_header_amd *mc_header; mc = get_next_ucode(ucode_ptr, leftover, get_ucode_data, &mc_size); if (!mc) break; mc_header = (struct microcode_header_amd *)mc; if (get_matching_microcode(cpu, mc, new_rev)) { if (new_mc) vfree(new_mc); new_rev = mc_header->patch_id; new_mc = mc; } else vfree(mc); ucode_ptr += mc_size; leftover -= mc_size; } if (new_mc) { if (!leftover) { if (uci->mc) vfree(uci->mc); uci->mc = new_mc; pr_debug("microcode: CPU%d found a matching microcode update with" " version 0x%x (current=0x%x)\n", cpu, new_rev, uci->cpu_sig.rev); } else vfree(new_mc); } free_equiv_cpu_table(); return (int)leftover; } static int get_ucode_fw(void *to, const void *from, size_t n) { memcpy(to, from, n); return 0; } static int request_microcode_fw(int cpu, struct device *device) { const char *fw_name = "amd-ucode/microcode_amd.bin"; const struct firmware *firmware; int ret; /* We should bind the task to the CPU */ BUG_ON(cpu != raw_smp_processor_id()); ret = request_firmware(&firmware, fw_name, device); if (ret) { printk(KERN_ERR "microcode: ucode data file %s load failed\n", fw_name); return ret; } ret = generic_load_microcode(cpu, (void*)firmware->data, firmware->size, &get_ucode_fw); release_firmware(firmware); return ret; } static int request_microcode_user(int cpu, const void __user *buf, size_t size) { printk(KERN_WARNING "microcode: AMD microcode update via /dev/cpu/microcode" "is not supported\n"); return -1; } static void microcode_fini_cpu_amd(int cpu) { struct ucode_cpu_info *uci = ucode_cpu_info + cpu; vfree(uci->mc); uci->mc = NULL; } static struct microcode_ops microcode_amd_ops = { .request_microcode_user = request_microcode_user, .request_microcode_fw = request_microcode_fw, .collect_cpu_info = collect_cpu_info_amd, .apply_microcode = apply_microcode_amd, .microcode_fini_cpu = microcode_fini_cpu_amd, }; struct microcode_ops * __init init_amd_microcode(void) { return µcode_amd_ops; }