/* * SGI UltraViolet TLB flush routines. * * (c) 2008-2010 Cliff Wickman , SGI. * * This code is released under the GNU General Public License version 2 or * later. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct msg_desc { struct bau_payload_queue_entry *msg; int msg_slot; int sw_ack_slot; struct bau_payload_queue_entry *va_queue_first; struct bau_payload_queue_entry *va_queue_last; }; #define UV_INTD_SOFT_ACK_TIMEOUT_PERIOD 0x000000000bUL static int uv_bau_max_concurrent __read_mostly; static int nobau; static int __init setup_nobau(char *arg) { nobau = 1; return 0; } early_param("nobau", setup_nobau); /* base pnode in this partition */ static int uv_partition_base_pnode __read_mostly; /* position of pnode (which is nasid>>1): */ static int uv_nshift __read_mostly; static unsigned long uv_mmask __read_mostly; static DEFINE_PER_CPU(struct ptc_stats, ptcstats); static DEFINE_PER_CPU(struct bau_control, bau_control); static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask); struct reset_args { int sender; }; /* * Determine the first node on a uvhub. 'Nodes' are used for kernel * memory allocation. */ static int __init uvhub_to_first_node(int uvhub) { int node, b; for_each_online_node(node) { b = uv_node_to_blade_id(node); if (uvhub == b) return node; } return -1; } /* * Determine the apicid of the first cpu on a uvhub. */ static int __init uvhub_to_first_apicid(int uvhub) { int cpu; for_each_present_cpu(cpu) if (uvhub == uv_cpu_to_blade_id(cpu)) return per_cpu(x86_cpu_to_apicid, cpu); return -1; } /* * Free a software acknowledge hardware resource by clearing its Pending * bit. This will return a reply to the sender. * If the message has timed out, a reply has already been sent by the * hardware but the resource has not been released. In that case our * clear of the Timeout bit (as well) will free the resource. No reply will * be sent (the hardware will only do one reply per message). */ static inline void uv_reply_to_message(struct msg_desc *mdp, struct bau_control *bcp) { unsigned long dw; struct bau_payload_queue_entry *msg; msg = mdp->msg; if (!msg->canceled) { dw = (msg->sw_ack_vector << UV_SW_ACK_NPENDING) | msg->sw_ack_vector; uv_write_local_mmr( UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw); } msg->replied_to = 1; msg->sw_ack_vector = 0; } /* * Process the receipt of a RETRY message */ static inline void uv_bau_process_retry_msg(struct msg_desc *mdp, struct bau_control *bcp) { int i; int cancel_count = 0; int slot2; unsigned long msg_res; unsigned long mmr = 0; struct bau_payload_queue_entry *msg; struct bau_payload_queue_entry *msg2; struct ptc_stats *stat; msg = mdp->msg; stat = &per_cpu(ptcstats, bcp->cpu); stat->d_retries++; /* * cancel any message from msg+1 to the retry itself */ for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) { if (msg2 > mdp->va_queue_last) msg2 = mdp->va_queue_first; if (msg2 == msg) break; /* same conditions for cancellation as uv_do_reset */ if ((msg2->replied_to == 0) && (msg2->canceled == 0) && (msg2->sw_ack_vector) && ((msg2->sw_ack_vector & msg->sw_ack_vector) == 0) && (msg2->sending_cpu == msg->sending_cpu) && (msg2->msg_type != MSG_NOOP)) { slot2 = msg2 - mdp->va_queue_first; mmr = uv_read_local_mmr (UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE); msg_res = ((msg2->sw_ack_vector << 8) | msg2->sw_ack_vector); /* * This is a message retry; clear the resources held * by the previous message only if they timed out. * If it has not timed out we have an unexpected * situation to report. */ if (mmr & (msg_res << 8)) { /* * is the resource timed out? * make everyone ignore the cancelled message. */ msg2->canceled = 1; stat->d_canceled++; cancel_count++; uv_write_local_mmr( UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, (msg_res << 8) | msg_res); } else printk(KERN_INFO "note bau retry: no effect\n"); } } if (!cancel_count) stat->d_nocanceled++; } /* * Do all the things a cpu should do for a TLB shootdown message. * Other cpu's may come here at the same time for this message. */ static void uv_bau_process_message(struct msg_desc *mdp, struct bau_control *bcp) { int msg_ack_count; short socket_ack_count = 0; struct ptc_stats *stat; struct bau_payload_queue_entry *msg; struct bau_control *smaster = bcp->socket_master; /* * This must be a normal message, or retry of a normal message */ msg = mdp->msg; stat = &per_cpu(ptcstats, bcp->cpu); if (msg->address == TLB_FLUSH_ALL) { local_flush_tlb(); stat->d_alltlb++; } else { __flush_tlb_one(msg->address); stat->d_onetlb++; } stat->d_requestee++; /* * One cpu on each uvhub has the additional job on a RETRY * of releasing the resource held by the message that is * being retried. That message is identified by sending * cpu number. */ if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master) uv_bau_process_retry_msg(mdp, bcp); /* * This is a sw_ack message, so we have to reply to it. * Count each responding cpu on the socket. This avoids * pinging the count's cache line back and forth between * the sockets. */ socket_ack_count = atomic_add_short_return(1, (struct atomic_short *) &smaster->socket_acknowledge_count[mdp->msg_slot]); if (socket_ack_count == bcp->cpus_in_socket) { /* * Both sockets dump their completed count total into * the message's count. */ smaster->socket_acknowledge_count[mdp->msg_slot] = 0; msg_ack_count = atomic_add_short_return(socket_ack_count, (struct atomic_short *)&msg->acknowledge_count); if (msg_ack_count == bcp->cpus_in_uvhub) { /* * All cpus in uvhub saw it; reply */ uv_reply_to_message(mdp, bcp); } } return; } /* * Determine the first cpu on a uvhub. */ static int uvhub_to_first_cpu(int uvhub) { int cpu; for_each_present_cpu(cpu) if (uvhub == uv_cpu_to_blade_id(cpu)) return cpu; return -1; } /* * Last resort when we get a large number of destination timeouts is * to clear resources held by a given cpu. * Do this with IPI so that all messages in the BAU message queue * can be identified by their nonzero sw_ack_vector field. * * This is entered for a single cpu on the uvhub. * The sender want's this uvhub to free a specific message's * sw_ack resources. */ static void uv_do_reset(void *ptr) { int i; int slot; int count = 0; unsigned long mmr; unsigned long msg_res; struct bau_control *bcp; struct reset_args *rap; struct bau_payload_queue_entry *msg; struct ptc_stats *stat; bcp = &per_cpu(bau_control, smp_processor_id()); rap = (struct reset_args *)ptr; stat = &per_cpu(ptcstats, bcp->cpu); stat->d_resets++; /* * We're looking for the given sender, and * will free its sw_ack resource. * If all cpu's finally responded after the timeout, its * message 'replied_to' was set. */ for (msg = bcp->va_queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) { /* uv_do_reset: same conditions for cancellation as uv_bau_process_retry_msg() */ if ((msg->replied_to == 0) && (msg->canceled == 0) && (msg->sending_cpu == rap->sender) && (msg->sw_ack_vector) && (msg->msg_type != MSG_NOOP)) { /* * make everyone else ignore this message */ msg->canceled = 1; slot = msg - bcp->va_queue_first; count++; /* * only reset the resource if it is still pending */ mmr = uv_read_local_mmr (UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE); msg_res = ((msg->sw_ack_vector << 8) | msg->sw_ack_vector); if (mmr & msg_res) { stat->d_rcanceled++; uv_write_local_mmr( UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, msg_res); } } } return; } /* * Use IPI to get all target uvhubs to release resources held by * a given sending cpu number. */ static void uv_reset_with_ipi(struct bau_target_uvhubmask *distribution, int sender) { int uvhub; int cpu; cpumask_t mask; struct reset_args reset_args; reset_args.sender = sender; cpus_clear(mask); /* find a single cpu for each uvhub in this distribution mask */ for (uvhub = 0; uvhub < sizeof(struct bau_target_uvhubmask) * BITSPERBYTE; uvhub++) { if (!bau_uvhub_isset(uvhub, distribution)) continue; /* find a cpu for this uvhub */ cpu = uvhub_to_first_cpu(uvhub); cpu_set(cpu, mask); } /* IPI all cpus; Preemption is already disabled */ smp_call_function_many(&mask, uv_do_reset, (void *)&reset_args, 1); return; } static inline unsigned long cycles_2_us(unsigned long long cyc) { unsigned long long ns; unsigned long us; ns = (cyc * per_cpu(cyc2ns, smp_processor_id())) >> CYC2NS_SCALE_FACTOR; us = ns / 1000; return us; } /* * wait for all cpus on this hub to finish their sends and go quiet * leaves uvhub_quiesce set so that no new broadcasts are started by * bau_flush_send_and_wait() */ static inline void quiesce_local_uvhub(struct bau_control *hmaster) { atomic_add_short_return(1, (struct atomic_short *) &hmaster->uvhub_quiesce); } /* * mark this quiet-requestor as done */ static inline void end_uvhub_quiesce(struct bau_control *hmaster) { atomic_add_short_return(-1, (struct atomic_short *) &hmaster->uvhub_quiesce); } /* * Wait for completion of a broadcast software ack message * return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP */ static int uv_wait_completion(struct bau_desc *bau_desc, unsigned long mmr_offset, int right_shift, int this_cpu, struct bau_control *bcp, struct bau_control *smaster, long try) { int relaxes = 0; unsigned long descriptor_status; unsigned long mmr; unsigned long mask; cycles_t ttime; cycles_t timeout_time; struct ptc_stats *stat = &per_cpu(ptcstats, this_cpu); struct bau_control *hmaster; hmaster = bcp->uvhub_master; timeout_time = get_cycles() + bcp->timeout_interval; /* spin on the status MMR, waiting for it to go idle */ while ((descriptor_status = (((unsigned long) uv_read_local_mmr(mmr_offset) >> right_shift) & UV_ACT_STATUS_MASK)) != DESC_STATUS_IDLE) { /* * Our software ack messages may be blocked because there are * no swack resources available. As long as none of them * has timed out hardware will NACK our message and its * state will stay IDLE. */ if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) { stat->s_stimeout++; return FLUSH_GIVEUP; } else if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) { stat->s_dtimeout++; ttime = get_cycles(); /* * Our retries may be blocked by all destination * swack resources being consumed, and a timeout * pending. In that case hardware returns the * ERROR that looks like a destination timeout. */ if (cycles_2_us(ttime - bcp->send_message) < BIOS_TO) { bcp->conseccompletes = 0; return FLUSH_RETRY_PLUGGED; } bcp->conseccompletes = 0; return FLUSH_RETRY_TIMEOUT; } else { /* * descriptor_status is still BUSY */ cpu_relax(); relaxes++; if (relaxes >= 10000) { relaxes = 0; if (get_cycles() > timeout_time) { quiesce_local_uvhub(hmaster); /* single-thread the register change */ spin_lock(&hmaster->masks_lock); mmr = uv_read_local_mmr(mmr_offset); mask = 0UL; mask |= (3UL < right_shift); mask = ~mask; mmr &= mask; uv_write_local_mmr(mmr_offset, mmr); spin_unlock(&hmaster->masks_lock); end_uvhub_quiesce(hmaster); stat->s_busy++; return FLUSH_GIVEUP; } } } } bcp->conseccompletes++; return FLUSH_COMPLETE; } static inline cycles_t sec_2_cycles(unsigned long sec) { unsigned long ns; cycles_t cyc; ns = sec * 1000000000; cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id())); return cyc; } /* * conditionally add 1 to *v, unless *v is >= u * return 0 if we cannot add 1 to *v because it is >= u * return 1 if we can add 1 to *v because it is < u * the add is atomic * * This is close to atomic_add_unless(), but this allows the 'u' value * to be lowered below the current 'v'. atomic_add_unless can only stop * on equal. */ static inline int atomic_inc_unless_ge(spinlock_t *lock, atomic_t *v, int u) { spin_lock(lock); if (atomic_read(v) >= u) { spin_unlock(lock); return 0; } atomic_inc(v); spin_unlock(lock); return 1; } /** * uv_flush_send_and_wait * * Send a broadcast and wait for it to complete. * * The flush_mask contains the cpus the broadcast is to be sent to, plus * cpus that are on the local uvhub. * * Returns NULL if all flushing represented in the mask was done. The mask * is zeroed. * Returns @flush_mask if some remote flushing remains to be done. The * mask will have some bits still set, representing any cpus on the local * uvhub (not current cpu) and any on remote uvhubs if the broadcast failed. */ const struct cpumask *uv_flush_send_and_wait(struct bau_desc *bau_desc, struct cpumask *flush_mask, struct bau_control *bcp) { int right_shift; int uvhub; int bit; int completion_status = 0; int seq_number = 0; long try = 0; int cpu = bcp->uvhub_cpu; int this_cpu = bcp->cpu; int this_uvhub = bcp->uvhub; unsigned long mmr_offset; unsigned long index; cycles_t time1; cycles_t time2; struct ptc_stats *stat = &per_cpu(ptcstats, bcp->cpu); struct bau_control *smaster = bcp->socket_master; struct bau_control *hmaster = bcp->uvhub_master; /* * Spin here while there are hmaster->max_concurrent or more active * descriptors. This is the per-uvhub 'throttle'. */ if (!atomic_inc_unless_ge(&hmaster->uvhub_lock, &hmaster->active_descriptor_count, hmaster->max_concurrent)) { stat->s_throttles++; do { cpu_relax(); } while (!atomic_inc_unless_ge(&hmaster->uvhub_lock, &hmaster->active_descriptor_count, hmaster->max_concurrent)); } while (hmaster->uvhub_quiesce) cpu_relax(); if (cpu < UV_CPUS_PER_ACT_STATUS) { mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0; right_shift = cpu * UV_ACT_STATUS_SIZE; } else { mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1; right_shift = ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE); } time1 = get_cycles(); do { /* * Every message from any given cpu gets a unique message * sequence number. But retries use that same number. * Our message may have timed out at the destination because * all sw-ack resources are in use and there is a timeout * pending there. In that case, our last send never got * placed into the queue and we need to persist until it * does. * * Make any retry a type MSG_RETRY so that the destination will * free any resource held by a previous message from this cpu. */ if (try == 0) { /* use message type set by the caller the first time */ seq_number = bcp->message_number++; } else { /* use RETRY type on all the rest; same sequence */ bau_desc->header.msg_type = MSG_RETRY; stat->s_retry_messages++; } bau_desc->header.sequence = seq_number; index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) | bcp->uvhub_cpu; bcp->send_message = get_cycles(); uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index); try++; completion_status = uv_wait_completion(bau_desc, mmr_offset, right_shift, this_cpu, bcp, smaster, try); if (completion_status == FLUSH_RETRY_PLUGGED) { /* * Our retries may be blocked by all destination swack * resources being consumed, and a timeout pending. In * that case hardware immediately returns the ERROR * that looks like a destination timeout. */ udelay(TIMEOUT_DELAY); bcp->plugged_tries++; if (bcp->plugged_tries >= PLUGSB4RESET) { bcp->plugged_tries = 0; quiesce_local_uvhub(hmaster); spin_lock(&hmaster->queue_lock); uv_reset_with_ipi(&bau_desc->distribution, this_cpu); spin_unlock(&hmaster->queue_lock); end_uvhub_quiesce(hmaster); bcp->ipi_attempts++; stat->s_resets_plug++; } } else if (completion_status == FLUSH_RETRY_TIMEOUT) { hmaster->max_concurrent = 1; bcp->timeout_tries++; udelay(TIMEOUT_DELAY); if (bcp->timeout_tries >= TIMEOUTSB4RESET) { bcp->timeout_tries = 0; quiesce_local_uvhub(hmaster); spin_lock(&hmaster->queue_lock); uv_reset_with_ipi(&bau_desc->distribution, this_cpu); spin_unlock(&hmaster->queue_lock); end_uvhub_quiesce(hmaster); bcp->ipi_attempts++; stat->s_resets_timeout++; } } if (bcp->ipi_attempts >= 3) { bcp->ipi_attempts = 0; completion_status = FLUSH_GIVEUP; break; } cpu_relax(); } while ((completion_status == FLUSH_RETRY_PLUGGED) || (completion_status == FLUSH_RETRY_TIMEOUT)); time2 = get_cycles(); if ((completion_status == FLUSH_COMPLETE) && (bcp->conseccompletes > 5) && (hmaster->max_concurrent < hmaster->max_concurrent_constant)) hmaster->max_concurrent++; /* * hold any cpu not timing out here; no other cpu currently held by * the 'throttle' should enter the activation code */ while (hmaster->uvhub_quiesce) cpu_relax(); atomic_dec(&hmaster->active_descriptor_count); /* guard against cycles wrap */ if (time2 > time1) stat->s_time += (time2 - time1); else stat->s_requestor--; /* don't count this one */ if (completion_status == FLUSH_COMPLETE && try > 1) stat->s_retriesok++; else if (completion_status == FLUSH_GIVEUP) { /* * Cause the caller to do an IPI-style TLB shootdown on * the target cpu's, all of which are still in the mask. */ stat->s_giveup++; return flush_mask; } /* * Success, so clear the remote cpu's from the mask so we don't * use the IPI method of shootdown on them. */ for_each_cpu(bit, flush_mask) { uvhub = uv_cpu_to_blade_id(bit); if (uvhub == this_uvhub) continue; cpumask_clear_cpu(bit, flush_mask); } if (!cpumask_empty(flush_mask)) return flush_mask; return NULL; } /** * uv_flush_tlb_others - globally purge translation cache of a virtual * address or all TLB's * @cpumask: mask of all cpu's in which the address is to be removed * @mm: mm_struct containing virtual address range * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu) * @cpu: the current cpu * * This is the entry point for initiating any UV global TLB shootdown. * * Purges the translation caches of all specified processors of the given * virtual address, or purges all TLB's on specified processors. * * The caller has derived the cpumask from the mm_struct. This function * is called only if there are bits set in the mask. (e.g. flush_tlb_page()) * * The cpumask is converted into a uvhubmask of the uvhubs containing * those cpus. * * Note that this function should be called with preemption disabled. * * Returns NULL if all remote flushing was done. * Returns pointer to cpumask if some remote flushing remains to be * done. The returned pointer is valid till preemption is re-enabled. */ const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask, struct mm_struct *mm, unsigned long va, unsigned int cpu) { int remotes; int tcpu; int uvhub; int locals = 0; struct bau_desc *bau_desc; struct cpumask *flush_mask; struct ptc_stats *stat; struct bau_control *bcp; if (nobau) return cpumask; bcp = &per_cpu(bau_control, cpu); /* * Each sending cpu has a per-cpu mask which it fills from the caller's * cpu mask. Only remote cpus are converted to uvhubs and copied. */ flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu); /* * copy cpumask to flush_mask, removing current cpu * (current cpu should already have been flushed by the caller and * should never be returned if we return flush_mask) */ cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu)); if (cpu_isset(cpu, *cpumask)) locals++; /* current cpu was targeted */ bau_desc = bcp->descriptor_base; bau_desc += UV_ITEMS_PER_DESCRIPTOR * bcp->uvhub_cpu; bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE); remotes = 0; for_each_cpu(tcpu, flush_mask) { uvhub = uv_cpu_to_blade_id(tcpu); if (uvhub == bcp->uvhub) { locals++; continue; } bau_uvhub_set(uvhub, &bau_desc->distribution); remotes++; } if (remotes == 0) { /* * No off_hub flushing; return status for local hub. * Return the caller's mask if all were local (the current * cpu may be in that mask). */ if (locals) return cpumask; else return NULL; } stat = &per_cpu(ptcstats, cpu); stat->s_requestor++; stat->s_ntargcpu += remotes; remotes = bau_uvhub_weight(&bau_desc->distribution); stat->s_ntarguvhub += remotes; if (remotes >= 16) stat->s_ntarguvhub16++; else if (remotes >= 8) stat->s_ntarguvhub8++; else if (remotes >= 4) stat->s_ntarguvhub4++; else if (remotes >= 2) stat->s_ntarguvhub2++; else stat->s_ntarguvhub1++; bau_desc->payload.address = va; bau_desc->payload.sending_cpu = cpu; /* * uv_flush_send_and_wait returns null if all cpu's were messaged, or * the adjusted flush_mask if any cpu's were not messaged. */ return uv_flush_send_and_wait(bau_desc, flush_mask, bcp); } /* * The BAU message interrupt comes here. (registered by set_intr_gate) * See entry_64.S * * We received a broadcast assist message. * * Interrupts are disabled; this interrupt could represent * the receipt of several messages. * * All cores/threads on this hub get this interrupt. * The last one to see it does the software ack. * (the resource will not be freed until noninterruptable cpus see this * interrupt; hardware may timeout the s/w ack and reply ERROR) */ void uv_bau_message_interrupt(struct pt_regs *regs) { int count = 0; cycles_t time_start; struct bau_payload_queue_entry *msg; struct bau_control *bcp; struct ptc_stats *stat; struct msg_desc msgdesc; time_start = get_cycles(); bcp = &per_cpu(bau_control, smp_processor_id()); stat = &per_cpu(ptcstats, smp_processor_id()); msgdesc.va_queue_first = bcp->va_queue_first; msgdesc.va_queue_last = bcp->va_queue_last; msg = bcp->bau_msg_head; while (msg->sw_ack_vector) { count++; msgdesc.msg_slot = msg - msgdesc.va_queue_first; msgdesc.sw_ack_slot = ffs(msg->sw_ack_vector) - 1; msgdesc.msg = msg; uv_bau_process_message(&msgdesc, bcp); msg++; if (msg > msgdesc.va_queue_last) msg = msgdesc.va_queue_first; bcp->bau_msg_head = msg; } stat->d_time += (get_cycles() - time_start); if (!count) stat->d_nomsg++; else if (count > 1) stat->d_multmsg++; ack_APIC_irq(); } /* * uv_enable_timeouts * * Each target uvhub (i.e. a uvhub that has no cpu's) needs to have * shootdown message timeouts enabled. The timeout does not cause * an interrupt, but causes an error message to be returned to * the sender. */ static void uv_enable_timeouts(void) { int uvhub; int nuvhubs; int pnode; unsigned long mmr_image; nuvhubs = uv_num_possible_blades(); for (uvhub = 0; uvhub < nuvhubs; uvhub++) { if (!uv_blade_nr_possible_cpus(uvhub)) continue; pnode = uv_blade_to_pnode(uvhub); mmr_image = uv_read_global_mmr64(pnode, UVH_LB_BAU_MISC_CONTROL); /* * Set the timeout period and then lock it in, in three * steps; captures and locks in the period. * * To program the period, the SOFT_ACK_MODE must be off. */ mmr_image &= ~((unsigned long)1 << UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT); uv_write_global_mmr64 (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image); /* * Set the 4-bit period. */ mmr_image &= ~((unsigned long)0xf << UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT); mmr_image |= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD << UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT); uv_write_global_mmr64 (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image); /* * Subsequent reversals of the timebase bit (3) cause an * immediate timeout of one or all INTD resources as * indicated in bits 2:0 (7 causes all of them to timeout). */ mmr_image |= ((unsigned long)1 << UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT); uv_write_global_mmr64 (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image); } } static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset) { if (*offset < num_possible_cpus()) return offset; return NULL; } static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset) { (*offset)++; if (*offset < num_possible_cpus()) return offset; return NULL; } static void uv_ptc_seq_stop(struct seq_file *file, void *data) { } static inline unsigned long long millisec_2_cycles(unsigned long millisec) { unsigned long ns; unsigned long long cyc; ns = millisec * 1000; cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id())); return cyc; } /* * Display the statistics thru /proc. * 'data' points to the cpu number */ static int uv_ptc_seq_show(struct seq_file *file, void *data) { struct ptc_stats *stat; int cpu; cpu = *(loff_t *)data; if (!cpu) { seq_printf(file, "# cpu sent stime numuvhubs numuvhubs16 numuvhubs8 "); seq_printf(file, "numuvhubs4 numuvhubs2 numuvhubs1 numcpus dto "); seq_printf(file, "retries rok resetp resett giveup sto bz throt "); seq_printf(file, "sw_ack recv rtime all "); seq_printf(file, "one mult none retry canc nocan reset rcan\n"); } if (cpu < num_possible_cpus() && cpu_online(cpu)) { stat = &per_cpu(ptcstats, cpu); /* source side statistics */ seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ", cpu, stat->s_requestor, cycles_2_us(stat->s_time), stat->s_ntarguvhub, stat->s_ntarguvhub16, stat->s_ntarguvhub8, stat->s_ntarguvhub4, stat->s_ntarguvhub2, stat->s_ntarguvhub1, stat->s_ntargcpu, stat->s_dtimeout); seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ", stat->s_retry_messages, stat->s_retriesok, stat->s_resets_plug, stat->s_resets_timeout, stat->s_giveup, stat->s_stimeout, stat->s_busy, stat->s_throttles); /* destination side statistics */ seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n", uv_read_global_mmr64(uv_cpu_to_pnode(cpu), UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE), stat->d_requestee, cycles_2_us(stat->d_time), stat->d_alltlb, stat->d_onetlb, stat->d_multmsg, stat->d_nomsg, stat->d_retries, stat->d_canceled, stat->d_nocanceled, stat->d_resets, stat->d_rcanceled); } return 0; } /* * -1: resetf the statistics * 0: display meaning of the statistics * >0: maximum concurrent active descriptors per uvhub (throttle) */ static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user, size_t count, loff_t *data) { int cpu; long input_arg; char optstr[64]; struct ptc_stats *stat; struct bau_control *bcp; if (count == 0 || count > sizeof(optstr)) return -EINVAL; if (copy_from_user(optstr, user, count)) return -EFAULT; optstr[count - 1] = '\0'; if (strict_strtol(optstr, 10, &input_arg) < 0) { printk(KERN_DEBUG "%s is invalid\n", optstr); return -EINVAL; } if (input_arg == 0) { printk(KERN_DEBUG "# cpu: cpu number\n"); printk(KERN_DEBUG "Sender statistics:\n"); printk(KERN_DEBUG "sent: number of shootdown messages sent\n"); printk(KERN_DEBUG "stime: time spent sending messages\n"); printk(KERN_DEBUG "numuvhubs: number of hubs targeted with shootdown\n"); printk(KERN_DEBUG "numuvhubs16: number times 16 or more hubs targeted\n"); printk(KERN_DEBUG "numuvhubs8: number times 8 or more hubs targeted\n"); printk(KERN_DEBUG "numuvhubs4: number times 4 or more hubs targeted\n"); printk(KERN_DEBUG "numuvhubs2: number times 2 or more hubs targeted\n"); printk(KERN_DEBUG "numuvhubs1: number times 1 hub targeted\n"); printk(KERN_DEBUG "numcpus: number of cpus targeted with shootdown\n"); printk(KERN_DEBUG "dto: number of destination timeouts\n"); printk(KERN_DEBUG "retries: destination timeout retries sent\n"); printk(KERN_DEBUG "rok: : destination timeouts successfully retried\n"); printk(KERN_DEBUG "resetp: ipi-style resource resets for plugs\n"); printk(KERN_DEBUG "resett: ipi-style resource resets for timeouts\n"); printk(KERN_DEBUG "giveup: fall-backs to ipi-style shootdowns\n"); printk(KERN_DEBUG "sto: number of source timeouts\n"); printk(KERN_DEBUG "bz: number of stay-busy's\n"); printk(KERN_DEBUG "throt: number times spun in throttle\n"); printk(KERN_DEBUG "Destination side statistics:\n"); printk(KERN_DEBUG "sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n"); printk(KERN_DEBUG "recv: shootdown messages received\n"); printk(KERN_DEBUG "rtime: time spent processing messages\n"); printk(KERN_DEBUG "all: shootdown all-tlb messages\n"); printk(KERN_DEBUG "one: shootdown one-tlb messages\n"); printk(KERN_DEBUG "mult: interrupts that found multiple messages\n"); printk(KERN_DEBUG "none: interrupts that found no messages\n"); printk(KERN_DEBUG "retry: number of retry messages processed\n"); printk(KERN_DEBUG "canc: number messages canceled by retries\n"); printk(KERN_DEBUG "nocan: number retries that found nothing to cancel\n"); printk(KERN_DEBUG "reset: number of ipi-style reset requests processed\n"); printk(KERN_DEBUG "rcan: number messages canceled by reset requests\n"); } else if (input_arg == -1) { for_each_present_cpu(cpu) { stat = &per_cpu(ptcstats, cpu); memset(stat, 0, sizeof(struct ptc_stats)); } } else { uv_bau_max_concurrent = input_arg; bcp = &per_cpu(bau_control, smp_processor_id()); if (uv_bau_max_concurrent < 1 || uv_bau_max_concurrent > bcp->cpus_in_uvhub) { printk(KERN_DEBUG "Error: BAU max concurrent %d; %d is invalid\n", bcp->max_concurrent, uv_bau_max_concurrent); return -EINVAL; } printk(KERN_DEBUG "Set BAU max concurrent:%d\n", uv_bau_max_concurrent); for_each_present_cpu(cpu) { bcp = &per_cpu(bau_control, cpu); bcp->max_concurrent = uv_bau_max_concurrent; } } return count; } static const struct seq_operations uv_ptc_seq_ops = { .start = uv_ptc_seq_start, .next = uv_ptc_seq_next, .stop = uv_ptc_seq_stop, .show = uv_ptc_seq_show }; static int uv_ptc_proc_open(struct inode *inode, struct file *file) { return seq_open(file, &uv_ptc_seq_ops); } static const struct file_operations proc_uv_ptc_operations = { .open = uv_ptc_proc_open, .read = seq_read, .write = uv_ptc_proc_write, .llseek = seq_lseek, .release = seq_release, }; static int __init uv_ptc_init(void) { struct proc_dir_entry *proc_uv_ptc; if (!is_uv_system()) return 0; proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL, &proc_uv_ptc_operations); if (!proc_uv_ptc) { printk(KERN_ERR "unable to create %s proc entry\n", UV_PTC_BASENAME); return -EINVAL; } return 0; } /* * initialize the sending side's sending buffers */ static void uv_activation_descriptor_init(int node, int pnode) { int i; int cpu; unsigned long pa; unsigned long m; unsigned long n; struct bau_desc *bau_desc; struct bau_desc *bd2; struct bau_control *bcp; /* * each bau_desc is 64 bytes; there are 8 (UV_ITEMS_PER_DESCRIPTOR) * per cpu; and up to 32 (UV_ADP_SIZE) cpu's per uvhub */ bau_desc = (struct bau_desc *)kmalloc_node(sizeof(struct bau_desc)* UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR, GFP_KERNEL, node); BUG_ON(!bau_desc); pa = uv_gpa(bau_desc); /* need the real nasid*/ n = pa >> uv_nshift; m = pa & uv_mmask; uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE, (n << UV_DESC_BASE_PNODE_SHIFT | m)); /* * initializing all 8 (UV_ITEMS_PER_DESCRIPTOR) descriptors for each * cpu even though we only use the first one; one descriptor can * describe a broadcast to 256 uv hubs. */ for (i = 0, bd2 = bau_desc; i < (UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR); i++, bd2++) { memset(bd2, 0, sizeof(struct bau_desc)); bd2->header.sw_ack_flag = 1; /* * base_dest_nodeid is the nasid (pnode<<1) of the first uvhub * in the partition. The bit map will indicate uvhub numbers, * which are 0-N in a partition. Pnodes are unique system-wide. */ bd2->header.base_dest_nodeid = uv_partition_base_pnode << 1; bd2->header.dest_subnodeid = 0x10; /* the LB */ bd2->header.command = UV_NET_ENDPOINT_INTD; bd2->header.int_both = 1; /* * all others need to be set to zero: * fairness chaining multilevel count replied_to */ } for_each_present_cpu(cpu) { if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu))) continue; bcp = &per_cpu(bau_control, cpu); bcp->descriptor_base = bau_desc; } } /* * initialize the destination side's receiving buffers * entered for each uvhub in the partition * - node is first node (kernel memory notion) on the uvhub * - pnode is the uvhub's physical identifier */ static void uv_payload_queue_init(int node, int pnode) { int pn; int cpu; char *cp; unsigned long pa; struct bau_payload_queue_entry *pqp; struct bau_payload_queue_entry *pqp_malloc; struct bau_control *bcp; pqp = (struct bau_payload_queue_entry *) kmalloc_node( (DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry), GFP_KERNEL, node); BUG_ON(!pqp); pqp_malloc = pqp; cp = (char *)pqp + 31; pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5); for_each_present_cpu(cpu) { if (pnode != uv_cpu_to_pnode(cpu)) continue; /* for every cpu on this pnode: */ bcp = &per_cpu(bau_control, cpu); bcp->va_queue_first = pqp; bcp->bau_msg_head = pqp; bcp->va_queue_last = pqp + (DEST_Q_SIZE - 1); } /* * need the pnode of where the memory was really allocated */ pa = uv_gpa(pqp); pn = pa >> uv_nshift; uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST, ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) | uv_physnodeaddr(pqp)); uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL, uv_physnodeaddr(pqp)); uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST, (unsigned long) uv_physnodeaddr(pqp + (DEST_Q_SIZE - 1))); /* in effect, all msg_type's are set to MSG_NOOP */ memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE); } /* * Initialization of each UV hub's structures */ static void __init uv_init_uvhub(int uvhub, int vector) { int node; int pnode; unsigned long apicid; node = uvhub_to_first_node(uvhub); pnode = uv_blade_to_pnode(uvhub); uv_activation_descriptor_init(node, pnode); uv_payload_queue_init(node, pnode); /* * the below initialization can't be in firmware because the * messaging IRQ will be determined by the OS */ apicid = uvhub_to_first_apicid(uvhub); uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG, ((apicid << 32) | vector)); } /* * initialize the bau_control structure for each cpu */ static void uv_init_per_cpu(int nuvhubs) { int i, j, k; int cpu; int pnode; int uvhub; short socket = 0; struct bau_control *bcp; struct uvhub_desc *bdp; struct socket_desc *sdp; struct bau_control *hmaster = NULL; struct bau_control *smaster = NULL; struct socket_desc { short num_cpus; short cpu_number[16]; }; struct uvhub_desc { short num_sockets; short num_cpus; short uvhub; short pnode; struct socket_desc socket[2]; }; struct uvhub_desc *uvhub_descs; uvhub_descs = (struct uvhub_desc *) kmalloc(nuvhubs * sizeof(struct uvhub_desc), GFP_KERNEL); memset(uvhub_descs, 0, nuvhubs * sizeof(struct uvhub_desc)); for_each_present_cpu(cpu) { bcp = &per_cpu(bau_control, cpu); memset(bcp, 0, sizeof(struct bau_control)); spin_lock_init(&bcp->masks_lock); bcp->max_concurrent = uv_bau_max_concurrent; pnode = uv_cpu_hub_info(cpu)->pnode; uvhub = uv_cpu_hub_info(cpu)->numa_blade_id; bdp = &uvhub_descs[uvhub]; bdp->num_cpus++; bdp->uvhub = uvhub; bdp->pnode = pnode; /* time interval to catch a hardware stay-busy bug */ bcp->timeout_interval = millisec_2_cycles(3); /* kludge: assume uv_hub.h is constant */ socket = (cpu_physical_id(cpu)>>5)&1; if (socket >= bdp->num_sockets) bdp->num_sockets = socket+1; sdp = &bdp->socket[socket]; sdp->cpu_number[sdp->num_cpus] = cpu; sdp->num_cpus++; } socket = 0; for_each_possible_blade(uvhub) { bdp = &uvhub_descs[uvhub]; for (i = 0; i < bdp->num_sockets; i++) { sdp = &bdp->socket[i]; for (j = 0; j < sdp->num_cpus; j++) { cpu = sdp->cpu_number[j]; bcp = &per_cpu(bau_control, cpu); bcp->cpu = cpu; if (j == 0) { smaster = bcp; if (i == 0) hmaster = bcp; } bcp->cpus_in_uvhub = bdp->num_cpus; bcp->cpus_in_socket = sdp->num_cpus; bcp->socket_master = smaster; bcp->uvhub_master = hmaster; for (k = 0; k < DEST_Q_SIZE; k++) bcp->socket_acknowledge_count[k] = 0; bcp->uvhub_cpu = uv_cpu_hub_info(cpu)->blade_processor_id; } socket++; } } kfree(uvhub_descs); } /* * Initialization of BAU-related structures */ static int __init uv_bau_init(void) { int uvhub; int pnode; int nuvhubs; int cur_cpu; int vector; unsigned long mmr; if (!is_uv_system()) return 0; if (nobau) return 0; for_each_possible_cpu(cur_cpu) zalloc_cpumask_var_node(&per_cpu(uv_flush_tlb_mask, cur_cpu), GFP_KERNEL, cpu_to_node(cur_cpu)); uv_bau_max_concurrent = MAX_BAU_CONCURRENT; uv_nshift = uv_hub_info->m_val; uv_mmask = (1UL << uv_hub_info->m_val) - 1; nuvhubs = uv_num_possible_blades(); uv_init_per_cpu(nuvhubs); uv_partition_base_pnode = 0x7fffffff; for (uvhub = 0; uvhub < nuvhubs; uvhub++) if (uv_blade_nr_possible_cpus(uvhub) && (uv_blade_to_pnode(uvhub) < uv_partition_base_pnode)) uv_partition_base_pnode = uv_blade_to_pnode(uvhub); vector = UV_BAU_MESSAGE; for_each_possible_blade(uvhub) if (uv_blade_nr_possible_cpus(uvhub)) uv_init_uvhub(uvhub, vector); uv_enable_timeouts(); alloc_intr_gate(vector, uv_bau_message_intr1); for_each_possible_blade(uvhub) { pnode = uv_blade_to_pnode(uvhub); /* INIT the bau */ uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_ACTIVATION_CONTROL, ((unsigned long)1 << 63)); mmr = 1; /* should be 1 to broadcast to both sockets */ uv_write_global_mmr64(pnode, UVH_BAU_DATA_BROADCAST, mmr); } return 0; } core_initcall(uv_bau_init); core_initcall(uv_ptc_init);