#define pr_fmt(fmt) "SVM: " fmt #include #include "irq.h" #include "mmu.h" #include "kvm_cache_regs.h" #include "x86.h" #include "cpuid.h" #include "pmu.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "trace.h" #include "svm.h" #include "svm_ops.h" #define __ex(x) __kvm_handle_fault_on_reboot(x) MODULE_AUTHOR("Qumranet"); MODULE_LICENSE("GPL"); #ifdef MODULE static const struct x86_cpu_id svm_cpu_id[] = { X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), {} }; MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); #endif #define IOPM_ALLOC_ORDER 2 #define MSRPM_ALLOC_ORDER 1 #define SEG_TYPE_LDT 2 #define SEG_TYPE_BUSY_TSS16 3 #define SVM_FEATURE_LBRV (1 << 1) #define SVM_FEATURE_SVML (1 << 2) #define SVM_FEATURE_TSC_RATE (1 << 4) #define SVM_FEATURE_VMCB_CLEAN (1 << 5) #define SVM_FEATURE_FLUSH_ASID (1 << 6) #define SVM_FEATURE_DECODE_ASSIST (1 << 7) #define SVM_FEATURE_PAUSE_FILTER (1 << 10) #define DEBUGCTL_RESERVED_BITS (~(0x3fULL)) #define TSC_RATIO_RSVD 0xffffff0000000000ULL #define TSC_RATIO_MIN 0x0000000000000001ULL #define TSC_RATIO_MAX 0x000000ffffffffffULL static bool erratum_383_found __read_mostly; u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; /* * Set osvw_len to higher value when updated Revision Guides * are published and we know what the new status bits are */ static uint64_t osvw_len = 4, osvw_status; static DEFINE_PER_CPU(u64, current_tsc_ratio); #define TSC_RATIO_DEFAULT 0x0100000000ULL static const struct svm_direct_access_msrs { u32 index; /* Index of the MSR */ bool always; /* True if intercept is initially cleared */ } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { { .index = MSR_STAR, .always = true }, { .index = MSR_IA32_SYSENTER_CS, .always = true }, #ifdef CONFIG_X86_64 { .index = MSR_GS_BASE, .always = true }, { .index = MSR_FS_BASE, .always = true }, { .index = MSR_KERNEL_GS_BASE, .always = true }, { .index = MSR_LSTAR, .always = true }, { .index = MSR_CSTAR, .always = true }, { .index = MSR_SYSCALL_MASK, .always = true }, #endif { .index = MSR_IA32_SPEC_CTRL, .always = false }, { .index = MSR_IA32_PRED_CMD, .always = false }, { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, { .index = MSR_IA32_LASTINTFROMIP, .always = false }, { .index = MSR_IA32_LASTINTTOIP, .always = false }, { .index = MSR_EFER, .always = false }, { .index = MSR_IA32_CR_PAT, .always = false }, { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, { .index = MSR_INVALID, .always = false }, }; /* * These 2 parameters are used to config the controls for Pause-Loop Exiting: * pause_filter_count: On processors that support Pause filtering(indicated * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter * count value. On VMRUN this value is loaded into an internal counter. * Each time a pause instruction is executed, this counter is decremented * until it reaches zero at which time a #VMEXIT is generated if pause * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause * Intercept Filtering for more details. * This also indicate if ple logic enabled. * * pause_filter_thresh: In addition, some processor families support advanced * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on * the amount of time a guest is allowed to execute in a pause loop. * In this mode, a 16-bit pause filter threshold field is added in the * VMCB. The threshold value is a cycle count that is used to reset the * pause counter. As with simple pause filtering, VMRUN loads the pause * count value from VMCB into an internal counter. Then, on each pause * instruction the hardware checks the elapsed number of cycles since * the most recent pause instruction against the pause filter threshold. * If the elapsed cycle count is greater than the pause filter threshold, * then the internal pause count is reloaded from the VMCB and execution * continues. If the elapsed cycle count is less than the pause filter * threshold, then the internal pause count is decremented. If the count * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is * triggered. If advanced pause filtering is supported and pause filter * threshold field is set to zero, the filter will operate in the simpler, * count only mode. */ static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; module_param(pause_filter_thresh, ushort, 0444); static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; module_param(pause_filter_count, ushort, 0444); /* Default doubles per-vcpu window every exit. */ static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; module_param(pause_filter_count_grow, ushort, 0444); /* Default resets per-vcpu window every exit to pause_filter_count. */ static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; module_param(pause_filter_count_shrink, ushort, 0444); /* Default is to compute the maximum so we can never overflow. */ static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; module_param(pause_filter_count_max, ushort, 0444); /* * Use nested page tables by default. Note, NPT may get forced off by * svm_hardware_setup() if it's unsupported by hardware or the host kernel. */ bool npt_enabled = true; module_param_named(npt, npt_enabled, bool, 0444); /* allow nested virtualization in KVM/SVM */ static int nested = true; module_param(nested, int, S_IRUGO); /* enable/disable Next RIP Save */ static int nrips = true; module_param(nrips, int, 0444); /* enable/disable Virtual VMLOAD VMSAVE */ static int vls = true; module_param(vls, int, 0444); /* enable/disable Virtual GIF */ static int vgif = true; module_param(vgif, int, 0444); /* enable/disable SEV support */ int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT); module_param(sev, int, 0444); /* enable/disable SEV-ES support */ int sev_es = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT); module_param(sev_es, int, 0444); bool __read_mostly dump_invalid_vmcb; module_param(dump_invalid_vmcb, bool, 0644); static bool svm_gp_erratum_intercept = true; static u8 rsm_ins_bytes[] = "\x0f\xaa"; static unsigned long iopm_base; struct kvm_ldttss_desc { u16 limit0; u16 base0; unsigned base1:8, type:5, dpl:2, p:1; unsigned limit1:4, zero0:3, g:1, base2:8; u32 base3; u32 zero1; } __attribute__((packed)); DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) #define MSRS_RANGE_SIZE 2048 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) u32 svm_msrpm_offset(u32 msr) { u32 offset; int i; for (i = 0; i < NUM_MSR_MAPS; i++) { if (msr < msrpm_ranges[i] || msr >= msrpm_ranges[i] + MSRS_IN_RANGE) continue; offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ offset += (i * MSRS_RANGE_SIZE); /* add range offset */ /* Now we have the u8 offset - but need the u32 offset */ return offset / 4; } /* MSR not in any range */ return MSR_INVALID; } #define MAX_INST_SIZE 15 static int get_max_npt_level(void) { #ifdef CONFIG_X86_64 return PT64_ROOT_4LEVEL; #else return PT32E_ROOT_LEVEL; #endif } int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) { struct vcpu_svm *svm = to_svm(vcpu); u64 old_efer = vcpu->arch.efer; vcpu->arch.efer = efer; if (!npt_enabled) { /* Shadow paging assumes NX to be available. */ efer |= EFER_NX; if (!(efer & EFER_LMA)) efer &= ~EFER_LME; } if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { if (!(efer & EFER_SVME)) { svm_leave_nested(svm); svm_set_gif(svm, true); /* #GP intercept is still needed for vmware backdoor */ if (!enable_vmware_backdoor) clr_exception_intercept(svm, GP_VECTOR); /* * Free the nested guest state, unless we are in SMM. * In this case we will return to the nested guest * as soon as we leave SMM. */ if (!is_smm(&svm->vcpu)) svm_free_nested(svm); } else { int ret = svm_allocate_nested(svm); if (ret) { vcpu->arch.efer = old_efer; return ret; } if (svm_gp_erratum_intercept) set_exception_intercept(svm, GP_VECTOR); } } svm->vmcb->save.efer = efer | EFER_SVME; vmcb_mark_dirty(svm->vmcb, VMCB_CR); return 0; } static int is_external_interrupt(u32 info) { info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR); } static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); u32 ret = 0; if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; return ret; } static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) { struct vcpu_svm *svm = to_svm(vcpu); if (mask == 0) svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; else svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; } static int skip_emulated_instruction(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); /* * SEV-ES does not expose the next RIP. The RIP update is controlled by * the type of exit and the #VC handler in the guest. */ if (sev_es_guest(vcpu->kvm)) goto done; if (nrips && svm->vmcb->control.next_rip != 0) { WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); svm->next_rip = svm->vmcb->control.next_rip; } if (!svm->next_rip) { if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) return 0; } else { kvm_rip_write(vcpu, svm->next_rip); } done: svm_set_interrupt_shadow(vcpu, 0); return 1; } static void svm_queue_exception(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); unsigned nr = vcpu->arch.exception.nr; bool has_error_code = vcpu->arch.exception.has_error_code; u32 error_code = vcpu->arch.exception.error_code; kvm_deliver_exception_payload(&svm->vcpu); if (nr == BP_VECTOR && !nrips) { unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu); /* * For guest debugging where we have to reinject #BP if some * INT3 is guest-owned: * Emulate nRIP by moving RIP forward. Will fail if injection * raises a fault that is not intercepted. Still better than * failing in all cases. */ (void)skip_emulated_instruction(&svm->vcpu); rip = kvm_rip_read(&svm->vcpu); svm->int3_rip = rip + svm->vmcb->save.cs.base; svm->int3_injected = rip - old_rip; } svm->vmcb->control.event_inj = nr | SVM_EVTINJ_VALID | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0) | SVM_EVTINJ_TYPE_EXEPT; svm->vmcb->control.event_inj_err = error_code; } static void svm_init_erratum_383(void) { u32 low, high; int err; u64 val; if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) return; /* Use _safe variants to not break nested virtualization */ val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); if (err) return; val |= (1ULL << 47); low = lower_32_bits(val); high = upper_32_bits(val); native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); erratum_383_found = true; } static void svm_init_osvw(struct kvm_vcpu *vcpu) { /* * Guests should see errata 400 and 415 as fixed (assuming that * HLT and IO instructions are intercepted). */ vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; vcpu->arch.osvw.status = osvw_status & ~(6ULL); /* * By increasing VCPU's osvw.length to 3 we are telling the guest that * all osvw.status bits inside that length, including bit 0 (which is * reserved for erratum 298), are valid. However, if host processor's * osvw_len is 0 then osvw_status[0] carries no information. We need to * be conservative here and therefore we tell the guest that erratum 298 * is present (because we really don't know). */ if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) vcpu->arch.osvw.status |= 1; } static int has_svm(void) { const char *msg; if (!cpu_has_svm(&msg)) { printk(KERN_INFO "has_svm: %s\n", msg); return 0; } if (sev_active()) { pr_info("KVM is unsupported when running as an SEV guest\n"); return 0; } return 1; } static void svm_hardware_disable(void) { /* Make sure we clean up behind us */ if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); cpu_svm_disable(); amd_pmu_disable_virt(); } static int svm_hardware_enable(void) { struct svm_cpu_data *sd; uint64_t efer; struct desc_struct *gdt; int me = raw_smp_processor_id(); rdmsrl(MSR_EFER, efer); if (efer & EFER_SVME) return -EBUSY; if (!has_svm()) { pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me); return -EINVAL; } sd = per_cpu(svm_data, me); if (!sd) { pr_err("%s: svm_data is NULL on %d\n", __func__, me); return -EINVAL; } sd->asid_generation = 1; sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; sd->next_asid = sd->max_asid + 1; sd->min_asid = max_sev_asid + 1; gdt = get_current_gdt_rw(); sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); wrmsrl(MSR_EFER, efer | EFER_SVME); wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area)); if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT); } /* * Get OSVW bits. * * Note that it is possible to have a system with mixed processor * revisions and therefore different OSVW bits. If bits are not the same * on different processors then choose the worst case (i.e. if erratum * is present on one processor and not on another then assume that the * erratum is present everywhere). */ if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { uint64_t len, status = 0; int err; len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); if (!err) status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, &err); if (err) osvw_status = osvw_len = 0; else { if (len < osvw_len) osvw_len = len; osvw_status |= status; osvw_status &= (1ULL << osvw_len) - 1; } } else osvw_status = osvw_len = 0; svm_init_erratum_383(); amd_pmu_enable_virt(); return 0; } static void svm_cpu_uninit(int cpu) { struct svm_cpu_data *sd = per_cpu(svm_data, cpu); if (!sd) return; per_cpu(svm_data, cpu) = NULL; kfree(sd->sev_vmcbs); __free_page(sd->save_area); kfree(sd); } static int svm_cpu_init(int cpu) { struct svm_cpu_data *sd; sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); if (!sd) return -ENOMEM; sd->cpu = cpu; sd->save_area = alloc_page(GFP_KERNEL); if (!sd->save_area) goto free_cpu_data; clear_page(page_address(sd->save_area)); if (svm_sev_enabled()) { sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1, sizeof(void *), GFP_KERNEL); if (!sd->sev_vmcbs) goto free_save_area; } per_cpu(svm_data, cpu) = sd; return 0; free_save_area: __free_page(sd->save_area); free_cpu_data: kfree(sd); return -ENOMEM; } static int direct_access_msr_slot(u32 msr) { u32 i; for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) if (direct_access_msrs[i].index == msr) return i; return -ENOENT; } static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, int write) { struct vcpu_svm *svm = to_svm(vcpu); int slot = direct_access_msr_slot(msr); if (slot == -ENOENT) return; /* Set the shadow bitmaps to the desired intercept states */ if (read) set_bit(slot, svm->shadow_msr_intercept.read); else clear_bit(slot, svm->shadow_msr_intercept.read); if (write) set_bit(slot, svm->shadow_msr_intercept.write); else clear_bit(slot, svm->shadow_msr_intercept.write); } static bool valid_msr_intercept(u32 index) { return direct_access_msr_slot(index) != -ENOENT; } static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) { u8 bit_write; unsigned long tmp; u32 offset; u32 *msrpm; msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: to_svm(vcpu)->msrpm; offset = svm_msrpm_offset(msr); bit_write = 2 * (msr & 0x0f) + 1; tmp = msrpm[offset]; BUG_ON(offset == MSR_INVALID); return !!test_bit(bit_write, &tmp); } static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, int read, int write) { u8 bit_read, bit_write; unsigned long tmp; u32 offset; /* * If this warning triggers extend the direct_access_msrs list at the * beginning of the file */ WARN_ON(!valid_msr_intercept(msr)); /* Enforce non allowed MSRs to trap */ if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) read = 0; if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) write = 0; offset = svm_msrpm_offset(msr); bit_read = 2 * (msr & 0x0f); bit_write = 2 * (msr & 0x0f) + 1; tmp = msrpm[offset]; BUG_ON(offset == MSR_INVALID); read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); msrpm[offset] = tmp; } void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, int read, int write) { set_shadow_msr_intercept(vcpu, msr, read, write); set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); } u32 *svm_vcpu_alloc_msrpm(void) { struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER); u32 *msrpm; if (!pages) return NULL; msrpm = page_address(pages); memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER)); return msrpm; } void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) { int i; for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { if (!direct_access_msrs[i].always) continue; set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); } } void svm_vcpu_free_msrpm(u32 *msrpm) { __free_pages(virt_to_page(msrpm), MSRPM_ALLOC_ORDER); } static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); u32 i; /* * Set intercept permissions for all direct access MSRs again. They * will automatically get filtered through the MSR filter, so we are * back in sync after this. */ for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { u32 msr = direct_access_msrs[i].index; u32 read = test_bit(i, svm->shadow_msr_intercept.read); u32 write = test_bit(i, svm->shadow_msr_intercept.write); set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); } } static void add_msr_offset(u32 offset) { int i; for (i = 0; i < MSRPM_OFFSETS; ++i) { /* Offset already in list? */ if (msrpm_offsets[i] == offset) return; /* Slot used by another offset? */ if (msrpm_offsets[i] != MSR_INVALID) continue; /* Add offset to list */ msrpm_offsets[i] = offset; return; } /* * If this BUG triggers the msrpm_offsets table has an overflow. Just * increase MSRPM_OFFSETS in this case. */ BUG(); } static void init_msrpm_offsets(void) { int i; memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { u32 offset; offset = svm_msrpm_offset(direct_access_msrs[i].index); BUG_ON(offset == MSR_INVALID); add_msr_offset(offset); } } static void svm_enable_lbrv(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); } static void svm_disable_lbrv(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); } void disable_nmi_singlestep(struct vcpu_svm *svm) { svm->nmi_singlestep = false; if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { /* Clear our flags if they were not set by the guest */ if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; } } static void grow_ple_window(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb_control_area *control = &svm->vmcb->control; int old = control->pause_filter_count; control->pause_filter_count = __grow_ple_window(old, pause_filter_count, pause_filter_count_grow, pause_filter_count_max); if (control->pause_filter_count != old) { vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); trace_kvm_ple_window_update(vcpu->vcpu_id, control->pause_filter_count, old); } } static void shrink_ple_window(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb_control_area *control = &svm->vmcb->control; int old = control->pause_filter_count; control->pause_filter_count = __shrink_ple_window(old, pause_filter_count, pause_filter_count_shrink, pause_filter_count); if (control->pause_filter_count != old) { vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); trace_kvm_ple_window_update(vcpu->vcpu_id, control->pause_filter_count, old); } } /* * The default MMIO mask is a single bit (excluding the present bit), * which could conflict with the memory encryption bit. Check for * memory encryption support and override the default MMIO mask if * memory encryption is enabled. */ static __init void svm_adjust_mmio_mask(void) { unsigned int enc_bit, mask_bit; u64 msr, mask; /* If there is no memory encryption support, use existing mask */ if (cpuid_eax(0x80000000) < 0x8000001f) return; /* If memory encryption is not enabled, use existing mask */ rdmsrl(MSR_K8_SYSCFG, msr); if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT)) return; enc_bit = cpuid_ebx(0x8000001f) & 0x3f; mask_bit = boot_cpu_data.x86_phys_bits; /* Increment the mask bit if it is the same as the encryption bit */ if (enc_bit == mask_bit) mask_bit++; /* * If the mask bit location is below 52, then some bits above the * physical addressing limit will always be reserved, so use the * rsvd_bits() function to generate the mask. This mask, along with * the present bit, will be used to generate a page fault with * PFER.RSV = 1. * * If the mask bit location is 52 (or above), then clear the mask. */ mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; kvm_mmu_set_mmio_spte_mask(mask, PT_WRITABLE_MASK | PT_USER_MASK); } static void svm_hardware_teardown(void) { int cpu; if (svm_sev_enabled()) sev_hardware_teardown(); for_each_possible_cpu(cpu) svm_cpu_uninit(cpu); __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER); iopm_base = 0; } static __init void svm_set_cpu_caps(void) { kvm_set_cpu_caps(); supported_xss = 0; /* CPUID 0x80000001 and 0x8000000A (SVM features) */ if (nested) { kvm_cpu_cap_set(X86_FEATURE_SVM); if (nrips) kvm_cpu_cap_set(X86_FEATURE_NRIPS); if (npt_enabled) kvm_cpu_cap_set(X86_FEATURE_NPT); /* Nested VM can receive #VMEXIT instead of triggering #GP */ kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); } /* CPUID 0x80000008 */ if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || boot_cpu_has(X86_FEATURE_AMD_SSBD)) kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); } static __init int svm_hardware_setup(void) { int cpu; struct page *iopm_pages; void *iopm_va; int r; iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER); if (!iopm_pages) return -ENOMEM; iopm_va = page_address(iopm_pages); memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER)); iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; init_msrpm_offsets(); supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR); if (boot_cpu_has(X86_FEATURE_NX)) kvm_enable_efer_bits(EFER_NX); if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) kvm_enable_efer_bits(EFER_FFXSR); if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { kvm_has_tsc_control = true; kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX; kvm_tsc_scaling_ratio_frac_bits = 32; } /* Check for pause filtering support */ if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { pause_filter_count = 0; pause_filter_thresh = 0; } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { pause_filter_thresh = 0; } if (nested) { printk(KERN_INFO "kvm: Nested Virtualization enabled\n"); kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); } if (IS_ENABLED(CONFIG_KVM_AMD_SEV) && sev) { sev_hardware_setup(); } else { sev = false; sev_es = false; } svm_adjust_mmio_mask(); for_each_possible_cpu(cpu) { r = svm_cpu_init(cpu); if (r) goto err; } /* * KVM's MMU doesn't support using 2-level paging for itself, and thus * NPT isn't supported if the host is using 2-level paging since host * CR4 is unchanged on VMRUN. */ if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) npt_enabled = false; if (!boot_cpu_has(X86_FEATURE_NPT)) npt_enabled = false; kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G); pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); if (nrips) { if (!boot_cpu_has(X86_FEATURE_NRIPS)) nrips = false; } if (avic) { if (!npt_enabled || !boot_cpu_has(X86_FEATURE_AVIC) || !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) { avic = false; } else { pr_info("AVIC enabled\n"); amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier); } } if (vls) { if (!npt_enabled || !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || !IS_ENABLED(CONFIG_X86_64)) { vls = false; } else { pr_info("Virtual VMLOAD VMSAVE supported\n"); } } if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) svm_gp_erratum_intercept = false; if (vgif) { if (!boot_cpu_has(X86_FEATURE_VGIF)) vgif = false; else pr_info("Virtual GIF supported\n"); } svm_set_cpu_caps(); /* * It seems that on AMD processors PTE's accessed bit is * being set by the CPU hardware before the NPF vmexit. * This is not expected behaviour and our tests fail because * of it. * A workaround here is to disable support for * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. * In this case userspace can know if there is support using * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle * it * If future AMD CPU models change the behaviour described above, * this variable can be changed accordingly */ allow_smaller_maxphyaddr = !npt_enabled; return 0; err: svm_hardware_teardown(); return r; } static void init_seg(struct vmcb_seg *seg) { seg->selector = 0; seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ seg->limit = 0xffff; seg->base = 0; } static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) { seg->selector = 0; seg->attrib = SVM_SELECTOR_P_MASK | type; seg->limit = 0xffff; seg->base = 0; } static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) { struct vcpu_svm *svm = to_svm(vcpu); u64 g_tsc_offset = 0; if (is_guest_mode(vcpu)) { /* Write L1's TSC offset. */ g_tsc_offset = svm->vmcb->control.tsc_offset - svm->nested.hsave->control.tsc_offset; svm->nested.hsave->control.tsc_offset = offset; } trace_kvm_write_tsc_offset(vcpu->vcpu_id, svm->vmcb->control.tsc_offset - g_tsc_offset, offset); svm->vmcb->control.tsc_offset = offset + g_tsc_offset; vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); return svm->vmcb->control.tsc_offset; } static void svm_check_invpcid(struct vcpu_svm *svm) { /* * Intercept INVPCID if shadow paging is enabled to sync/free shadow * roots, or if INVPCID is disabled in the guest to inject #UD. */ if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { if (!npt_enabled || !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID)) svm_set_intercept(svm, INTERCEPT_INVPCID); else svm_clr_intercept(svm, INTERCEPT_INVPCID); } } static void init_vmcb(struct vcpu_svm *svm) { struct vmcb_control_area *control = &svm->vmcb->control; struct vmcb_save_area *save = &svm->vmcb->save; svm->vcpu.arch.hflags = 0; svm_set_intercept(svm, INTERCEPT_CR0_READ); svm_set_intercept(svm, INTERCEPT_CR3_READ); svm_set_intercept(svm, INTERCEPT_CR4_READ); svm_set_intercept(svm, INTERCEPT_CR0_WRITE); svm_set_intercept(svm, INTERCEPT_CR3_WRITE); svm_set_intercept(svm, INTERCEPT_CR4_WRITE); if (!kvm_vcpu_apicv_active(&svm->vcpu)) svm_set_intercept(svm, INTERCEPT_CR8_WRITE); set_dr_intercepts(svm); set_exception_intercept(svm, PF_VECTOR); set_exception_intercept(svm, UD_VECTOR); set_exception_intercept(svm, MC_VECTOR); set_exception_intercept(svm, AC_VECTOR); set_exception_intercept(svm, DB_VECTOR); /* * Guest access to VMware backdoor ports could legitimately * trigger #GP because of TSS I/O permission bitmap. * We intercept those #GP and allow access to them anyway * as VMware does. */ if (enable_vmware_backdoor) set_exception_intercept(svm, GP_VECTOR); svm_set_intercept(svm, INTERCEPT_INTR); svm_set_intercept(svm, INTERCEPT_NMI); svm_set_intercept(svm, INTERCEPT_SMI); svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); svm_set_intercept(svm, INTERCEPT_RDPMC); svm_set_intercept(svm, INTERCEPT_CPUID); svm_set_intercept(svm, INTERCEPT_INVD); svm_set_intercept(svm, INTERCEPT_INVLPG); svm_set_intercept(svm, INTERCEPT_INVLPGA); svm_set_intercept(svm, INTERCEPT_IOIO_PROT); svm_set_intercept(svm, INTERCEPT_MSR_PROT); svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); svm_set_intercept(svm, INTERCEPT_SHUTDOWN); svm_set_intercept(svm, INTERCEPT_VMRUN); svm_set_intercept(svm, INTERCEPT_VMMCALL); svm_set_intercept(svm, INTERCEPT_VMLOAD); svm_set_intercept(svm, INTERCEPT_VMSAVE); svm_set_intercept(svm, INTERCEPT_STGI); svm_set_intercept(svm, INTERCEPT_CLGI); svm_set_intercept(svm, INTERCEPT_SKINIT); svm_set_intercept(svm, INTERCEPT_WBINVD); svm_set_intercept(svm, INTERCEPT_XSETBV); svm_set_intercept(svm, INTERCEPT_RDPRU); svm_set_intercept(svm, INTERCEPT_RSM); if (!kvm_mwait_in_guest(svm->vcpu.kvm)) { svm_set_intercept(svm, INTERCEPT_MONITOR); svm_set_intercept(svm, INTERCEPT_MWAIT); } if (!kvm_hlt_in_guest(svm->vcpu.kvm)) svm_set_intercept(svm, INTERCEPT_HLT); control->iopm_base_pa = __sme_set(iopm_base); control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); control->int_ctl = V_INTR_MASKING_MASK; init_seg(&save->es); init_seg(&save->ss); init_seg(&save->ds); init_seg(&save->fs); init_seg(&save->gs); save->cs.selector = 0xf000; save->cs.base = 0xffff0000; /* Executable/Readable Code Segment */ save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; save->cs.limit = 0xffff; save->gdtr.limit = 0xffff; save->idtr.limit = 0xffff; init_sys_seg(&save->ldtr, SEG_TYPE_LDT); init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); svm_set_cr4(&svm->vcpu, 0); svm_set_efer(&svm->vcpu, 0); save->dr6 = 0xffff0ff0; kvm_set_rflags(&svm->vcpu, X86_EFLAGS_FIXED); save->rip = 0x0000fff0; svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip; /* * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0. * It also updates the guest-visible cr0 value. */ svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET); kvm_mmu_reset_context(&svm->vcpu); save->cr4 = X86_CR4_PAE; /* rdx = ?? */ if (npt_enabled) { /* Setup VMCB for Nested Paging */ control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; svm_clr_intercept(svm, INTERCEPT_INVLPG); clr_exception_intercept(svm, PF_VECTOR); svm_clr_intercept(svm, INTERCEPT_CR3_READ); svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); save->g_pat = svm->vcpu.arch.pat; save->cr3 = 0; save->cr4 = 0; } svm->asid_generation = 0; svm->asid = 0; svm->nested.vmcb12_gpa = 0; svm->vcpu.arch.hflags = 0; if (!kvm_pause_in_guest(svm->vcpu.kvm)) { control->pause_filter_count = pause_filter_count; if (pause_filter_thresh) control->pause_filter_thresh = pause_filter_thresh; svm_set_intercept(svm, INTERCEPT_PAUSE); } else { svm_clr_intercept(svm, INTERCEPT_PAUSE); } svm_check_invpcid(svm); if (kvm_vcpu_apicv_active(&svm->vcpu)) avic_init_vmcb(svm); /* * If hardware supports Virtual VMLOAD VMSAVE then enable it * in VMCB and clear intercepts to avoid #VMEXIT. */ if (vls) { svm_clr_intercept(svm, INTERCEPT_VMLOAD); svm_clr_intercept(svm, INTERCEPT_VMSAVE); svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; } if (vgif) { svm_clr_intercept(svm, INTERCEPT_STGI); svm_clr_intercept(svm, INTERCEPT_CLGI); svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; } if (sev_guest(svm->vcpu.kvm)) { svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; clr_exception_intercept(svm, UD_VECTOR); if (sev_es_guest(svm->vcpu.kvm)) { /* Perform SEV-ES specific VMCB updates */ sev_es_init_vmcb(svm); } } vmcb_mark_all_dirty(svm->vmcb); enable_gif(svm); } static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) { struct vcpu_svm *svm = to_svm(vcpu); u32 dummy; u32 eax = 1; svm->spec_ctrl = 0; svm->virt_spec_ctrl = 0; if (!init_event) { svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE; if (kvm_vcpu_is_reset_bsp(&svm->vcpu)) svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP; } init_vmcb(svm); kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false); kvm_rdx_write(vcpu, eax); if (kvm_vcpu_apicv_active(vcpu) && !init_event) avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE); } static int svm_create_vcpu(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm; struct page *vmcb_page; struct page *vmsa_page = NULL; int err; BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); svm = to_svm(vcpu); err = -ENOMEM; vmcb_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); if (!vmcb_page) goto out; if (sev_es_guest(svm->vcpu.kvm)) { /* * SEV-ES guests require a separate VMSA page used to contain * the encrypted register state of the guest. */ vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); if (!vmsa_page) goto error_free_vmcb_page; /* * SEV-ES guests maintain an encrypted version of their FPU * state which is restored and saved on VMRUN and VMEXIT. * Free the fpu structure to prevent KVM from attempting to * access the FPU state. */ kvm_free_guest_fpu(vcpu); } err = avic_init_vcpu(svm); if (err) goto error_free_vmsa_page; /* We initialize this flag to true to make sure that the is_running * bit would be set the first time the vcpu is loaded. */ if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm)) svm->avic_is_running = true; svm->msrpm = svm_vcpu_alloc_msrpm(); if (!svm->msrpm) { err = -ENOMEM; goto error_free_vmsa_page; } svm_vcpu_init_msrpm(vcpu, svm->msrpm); svm->vmcb = page_address(vmcb_page); svm->vmcb_pa = __sme_set(page_to_pfn(vmcb_page) << PAGE_SHIFT); if (vmsa_page) svm->vmsa = page_address(vmsa_page); svm->asid_generation = 0; svm->guest_state_loaded = false; init_vmcb(svm); svm_init_osvw(vcpu); vcpu->arch.microcode_version = 0x01000065; if (sev_es_guest(svm->vcpu.kvm)) /* Perform SEV-ES specific VMCB creation updates */ sev_es_create_vcpu(svm); return 0; error_free_vmsa_page: if (vmsa_page) __free_page(vmsa_page); error_free_vmcb_page: __free_page(vmcb_page); out: return err; } static void svm_clear_current_vmcb(struct vmcb *vmcb) { int i; for_each_online_cpu(i) cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL); } static void svm_free_vcpu(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); /* * The vmcb page can be recycled, causing a false negative in * svm_vcpu_load(). So, ensure that no logical CPU has this * vmcb page recorded as its current vmcb. */ svm_clear_current_vmcb(svm->vmcb); svm_free_nested(svm); sev_free_vcpu(vcpu); __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT)); __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER); } static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); unsigned int i; if (svm->guest_state_loaded) return; /* * Certain MSRs are restored on VMEXIT (sev-es), or vmload of host save * area (non-sev-es). Save ones that aren't so we can restore them * individually later. */ for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); /* * Save additional host state that will be restored on VMEXIT (sev-es) * or subsequent vmload of host save area. */ if (sev_es_guest(svm->vcpu.kvm)) { sev_es_prepare_guest_switch(svm, vcpu->cpu); } else { vmsave(__sme_page_pa(sd->save_area)); } if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio; if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) { __this_cpu_write(current_tsc_ratio, tsc_ratio); wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio); } } /* This assumes that the kernel never uses MSR_TSC_AUX */ if (static_cpu_has(X86_FEATURE_RDTSCP)) wrmsrl(MSR_TSC_AUX, svm->tsc_aux); svm->guest_state_loaded = true; } static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); unsigned int i; if (!svm->guest_state_loaded) return; /* * Certain MSRs are restored on VMEXIT (sev-es), or vmload of host save * area (non-sev-es). Restore the ones that weren't. */ for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); svm->guest_state_loaded = false; } static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { struct vcpu_svm *svm = to_svm(vcpu); struct svm_cpu_data *sd = per_cpu(svm_data, cpu); if (unlikely(cpu != vcpu->cpu)) { svm->asid_generation = 0; vmcb_mark_all_dirty(svm->vmcb); } if (sd->current_vmcb != svm->vmcb) { sd->current_vmcb = svm->vmcb; indirect_branch_prediction_barrier(); } avic_vcpu_load(vcpu, cpu); } static void svm_vcpu_put(struct kvm_vcpu *vcpu) { avic_vcpu_put(vcpu); svm_prepare_host_switch(vcpu); ++vcpu->stat.host_state_reload; } static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); unsigned long rflags = svm->vmcb->save.rflags; if (svm->nmi_singlestep) { /* Hide our flags if they were not set by the guest */ if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) rflags &= ~X86_EFLAGS_TF; if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) rflags &= ~X86_EFLAGS_RF; } return rflags; } static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) { if (to_svm(vcpu)->nmi_singlestep) rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); /* * Any change of EFLAGS.VM is accompanied by a reload of SS * (caused by either a task switch or an inter-privilege IRET), * so we do not need to update the CPL here. */ to_svm(vcpu)->vmcb->save.rflags = rflags; } static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) { switch (reg) { case VCPU_EXREG_PDPTR: BUG_ON(!npt_enabled); load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); break; default: WARN_ON_ONCE(1); } } static void svm_set_vintr(struct vcpu_svm *svm) { struct vmcb_control_area *control; /* The following fields are ignored when AVIC is enabled */ WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu)); svm_set_intercept(svm, INTERCEPT_VINTR); /* * This is just a dummy VINTR to actually cause a vmexit to happen. * Actual injection of virtual interrupts happens through EVENTINJ. */ control = &svm->vmcb->control; control->int_vector = 0x0; control->int_ctl &= ~V_INTR_PRIO_MASK; control->int_ctl |= V_IRQ_MASK | ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); vmcb_mark_dirty(svm->vmcb, VMCB_INTR); } static void svm_clear_vintr(struct vcpu_svm *svm) { const u32 mask = V_TPR_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK | V_INTR_MASKING_MASK; svm_clr_intercept(svm, INTERCEPT_VINTR); /* Drop int_ctl fields related to VINTR injection. */ svm->vmcb->control.int_ctl &= mask; if (is_guest_mode(&svm->vcpu)) { svm->nested.hsave->control.int_ctl &= mask; WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != (svm->nested.ctl.int_ctl & V_TPR_MASK)); svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & ~mask; } vmcb_mark_dirty(svm->vmcb, VMCB_INTR); } static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) { struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; switch (seg) { case VCPU_SREG_CS: return &save->cs; case VCPU_SREG_DS: return &save->ds; case VCPU_SREG_ES: return &save->es; case VCPU_SREG_FS: return &save->fs; case VCPU_SREG_GS: return &save->gs; case VCPU_SREG_SS: return &save->ss; case VCPU_SREG_TR: return &save->tr; case VCPU_SREG_LDTR: return &save->ldtr; } BUG(); return NULL; } static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) { struct vmcb_seg *s = svm_seg(vcpu, seg); return s->base; } static void svm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { struct vmcb_seg *s = svm_seg(vcpu, seg); var->base = s->base; var->limit = s->limit; var->selector = s->selector; var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; /* * AMD CPUs circa 2014 track the G bit for all segments except CS. * However, the SVM spec states that the G bit is not observed by the * CPU, and some VMware virtual CPUs drop the G bit for all segments. * So let's synthesize a legal G bit for all segments, this helps * running KVM nested. It also helps cross-vendor migration, because * Intel's vmentry has a check on the 'G' bit. */ var->g = s->limit > 0xfffff; /* * AMD's VMCB does not have an explicit unusable field, so emulate it * for cross vendor migration purposes by "not present" */ var->unusable = !var->present; switch (seg) { case VCPU_SREG_TR: /* * Work around a bug where the busy flag in the tr selector * isn't exposed */ var->type |= 0x2; break; case VCPU_SREG_DS: case VCPU_SREG_ES: case VCPU_SREG_FS: case VCPU_SREG_GS: /* * The accessed bit must always be set in the segment * descriptor cache, although it can be cleared in the * descriptor, the cached bit always remains at 1. Since * Intel has a check on this, set it here to support * cross-vendor migration. */ if (!var->unusable) var->type |= 0x1; break; case VCPU_SREG_SS: /* * On AMD CPUs sometimes the DB bit in the segment * descriptor is left as 1, although the whole segment has * been made unusable. Clear it here to pass an Intel VMX * entry check when cross vendor migrating. */ if (var->unusable) var->db = 0; /* This is symmetric with svm_set_segment() */ var->dpl = to_svm(vcpu)->vmcb->save.cpl; break; } } static int svm_get_cpl(struct kvm_vcpu *vcpu) { struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; return save->cpl; } static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { struct vcpu_svm *svm = to_svm(vcpu); dt->size = svm->vmcb->save.idtr.limit; dt->address = svm->vmcb->save.idtr.base; } static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb->save.idtr.limit = dt->size; svm->vmcb->save.idtr.base = dt->address ; vmcb_mark_dirty(svm->vmcb, VMCB_DT); } static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { struct vcpu_svm *svm = to_svm(vcpu); dt->size = svm->vmcb->save.gdtr.limit; dt->address = svm->vmcb->save.gdtr.base; } static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb->save.gdtr.limit = dt->size; svm->vmcb->save.gdtr.base = dt->address ; vmcb_mark_dirty(svm->vmcb, VMCB_DT); } static void update_cr0_intercept(struct vcpu_svm *svm) { ulong gcr0; u64 *hcr0; /* * SEV-ES guests must always keep the CR intercepts cleared. CR * tracking is done using the CR write traps. */ if (sev_es_guest(svm->vcpu.kvm)) return; gcr0 = svm->vcpu.arch.cr0; hcr0 = &svm->vmcb->save.cr0; *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK) | (gcr0 & SVM_CR0_SELECTIVE_MASK); vmcb_mark_dirty(svm->vmcb, VMCB_CR); if (gcr0 == *hcr0) { svm_clr_intercept(svm, INTERCEPT_CR0_READ); svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); } else { svm_set_intercept(svm, INTERCEPT_CR0_READ); svm_set_intercept(svm, INTERCEPT_CR0_WRITE); } } void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) { struct vcpu_svm *svm = to_svm(vcpu); #ifdef CONFIG_X86_64 if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) { if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { vcpu->arch.efer |= EFER_LMA; svm->vmcb->save.efer |= EFER_LMA | EFER_LME; } if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { vcpu->arch.efer &= ~EFER_LMA; svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); } } #endif vcpu->arch.cr0 = cr0; if (!npt_enabled) cr0 |= X86_CR0_PG | X86_CR0_WP; /* * re-enable caching here because the QEMU bios * does not do it - this results in some delay at * reboot */ if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) cr0 &= ~(X86_CR0_CD | X86_CR0_NW); svm->vmcb->save.cr0 = cr0; vmcb_mark_dirty(svm->vmcb, VMCB_CR); update_cr0_intercept(svm); } static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) { return true; } void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) { unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; unsigned long old_cr4 = vcpu->arch.cr4; if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) svm_flush_tlb(vcpu); vcpu->arch.cr4 = cr4; if (!npt_enabled) cr4 |= X86_CR4_PAE; cr4 |= host_cr4_mce; to_svm(vcpu)->vmcb->save.cr4 = cr4; vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) kvm_update_cpuid_runtime(vcpu); } static void svm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb_seg *s = svm_seg(vcpu, seg); s->base = var->base; s->limit = var->limit; s->selector = var->selector; s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; /* * This is always accurate, except if SYSRET returned to a segment * with SS.DPL != 3. Intel does not have this quirk, and always * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it * would entail passing the CPL to userspace and back. */ if (seg == VCPU_SREG_SS) /* This is symmetric with svm_get_segment() */ svm->vmcb->save.cpl = (var->dpl & 3); vmcb_mark_dirty(svm->vmcb, VMCB_SEG); } static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); clr_exception_intercept(svm, BP_VECTOR); if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) set_exception_intercept(svm, BP_VECTOR); } } static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) { if (sd->next_asid > sd->max_asid) { ++sd->asid_generation; sd->next_asid = sd->min_asid; svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; vmcb_mark_dirty(svm->vmcb, VMCB_ASID); } svm->asid_generation = sd->asid_generation; svm->asid = sd->next_asid++; } static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) { struct vmcb *vmcb = svm->vmcb; if (svm->vcpu.arch.guest_state_protected) return; if (unlikely(value != vmcb->save.dr6)) { vmcb->save.dr6 = value; vmcb_mark_dirty(vmcb, VMCB_DR); } } static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); if (vcpu->arch.guest_state_protected) return; get_debugreg(vcpu->arch.db[0], 0); get_debugreg(vcpu->arch.db[1], 1); get_debugreg(vcpu->arch.db[2], 2); get_debugreg(vcpu->arch.db[3], 3); /* * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, * because db_interception might need it. We can do it before vmentry. */ vcpu->arch.dr6 = svm->vmcb->save.dr6; vcpu->arch.dr7 = svm->vmcb->save.dr7; vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; set_dr_intercepts(svm); } static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) { struct vcpu_svm *svm = to_svm(vcpu); if (vcpu->arch.guest_state_protected) return; svm->vmcb->save.dr7 = value; vmcb_mark_dirty(svm->vmcb, VMCB_DR); } static int pf_interception(struct vcpu_svm *svm) { u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2); u64 error_code = svm->vmcb->control.exit_info_1; return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address, static_cpu_has(X86_FEATURE_DECODEASSISTS) ? svm->vmcb->control.insn_bytes : NULL, svm->vmcb->control.insn_len); } static int npf_interception(struct vcpu_svm *svm) { u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2); u64 error_code = svm->vmcb->control.exit_info_1; trace_kvm_page_fault(fault_address, error_code); return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code, static_cpu_has(X86_FEATURE_DECODEASSISTS) ? svm->vmcb->control.insn_bytes : NULL, svm->vmcb->control.insn_len); } static int db_interception(struct vcpu_svm *svm) { struct kvm_run *kvm_run = svm->vcpu.run; struct kvm_vcpu *vcpu = &svm->vcpu; if (!(svm->vcpu.guest_debug & (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && !svm->nmi_singlestep) { u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; kvm_queue_exception_p(&svm->vcpu, DB_VECTOR, payload); return 1; } if (svm->nmi_singlestep) { disable_nmi_singlestep(svm); /* Make sure we check for pending NMIs upon entry */ kvm_make_request(KVM_REQ_EVENT, vcpu); } if (svm->vcpu.guest_debug & (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { kvm_run->exit_reason = KVM_EXIT_DEBUG; kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; kvm_run->debug.arch.exception = DB_VECTOR; return 0; } return 1; } static int bp_interception(struct vcpu_svm *svm) { struct kvm_run *kvm_run = svm->vcpu.run; kvm_run->exit_reason = KVM_EXIT_DEBUG; kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; kvm_run->debug.arch.exception = BP_VECTOR; return 0; } static int ud_interception(struct vcpu_svm *svm) { return handle_ud(&svm->vcpu); } static int ac_interception(struct vcpu_svm *svm) { kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0); return 1; } static bool is_erratum_383(void) { int err, i; u64 value; if (!erratum_383_found) return false; value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); if (err) return false; /* Bit 62 may or may not be set for this mce */ value &= ~(1ULL << 62); if (value != 0xb600000000010015ULL) return false; /* Clear MCi_STATUS registers */ for (i = 0; i < 6; ++i) native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); if (!err) { u32 low, high; value &= ~(1ULL << 2); low = lower_32_bits(value); high = upper_32_bits(value); native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); } /* Flush tlb to evict multi-match entries */ __flush_tlb_all(); return true; } static void svm_handle_mce(struct vcpu_svm *svm) { if (is_erratum_383()) { /* * Erratum 383 triggered. Guest state is corrupt so kill the * guest. */ pr_err("KVM: Guest triggered AMD Erratum 383\n"); kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu); return; } /* * On an #MC intercept the MCE handler is not called automatically in * the host. So do it by hand here. */ kvm_machine_check(); } static int mc_interception(struct vcpu_svm *svm) { return 1; } static int shutdown_interception(struct vcpu_svm *svm) { struct kvm_run *kvm_run = svm->vcpu.run; /* * The VM save area has already been encrypted so it * cannot be reinitialized - just terminate. */ if (sev_es_guest(svm->vcpu.kvm)) return -EINVAL; /* * VMCB is undefined after a SHUTDOWN intercept * so reinitialize it. */ clear_page(svm->vmcb); init_vmcb(svm); kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; return 0; } static int io_interception(struct vcpu_svm *svm) { struct kvm_vcpu *vcpu = &svm->vcpu; u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ int size, in, string; unsigned port; ++svm->vcpu.stat.io_exits; string = (io_info & SVM_IOIO_STR_MASK) != 0; in = (io_info & SVM_IOIO_TYPE_MASK) != 0; port = io_info >> 16; size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; if (string) { if (sev_es_guest(vcpu->kvm)) return sev_es_string_io(svm, size, port, in); else return kvm_emulate_instruction(vcpu, 0); } svm->next_rip = svm->vmcb->control.exit_info_2; return kvm_fast_pio(&svm->vcpu, size, port, in); } static int nmi_interception(struct vcpu_svm *svm) { return 1; } static int intr_interception(struct vcpu_svm *svm) { ++svm->vcpu.stat.irq_exits; return 1; } static int nop_on_interception(struct vcpu_svm *svm) { return 1; } static int halt_interception(struct vcpu_svm *svm) { return kvm_emulate_halt(&svm->vcpu); } static int vmmcall_interception(struct vcpu_svm *svm) { return kvm_emulate_hypercall(&svm->vcpu); } static int vmload_interception(struct vcpu_svm *svm) { struct vmcb *nested_vmcb; struct kvm_host_map map; int ret; if (nested_svm_check_permissions(svm)) return 1; ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); if (ret) { if (ret == -EINVAL) kvm_inject_gp(&svm->vcpu, 0); return 1; } nested_vmcb = map.hva; ret = kvm_skip_emulated_instruction(&svm->vcpu); nested_svm_vmloadsave(nested_vmcb, svm->vmcb); kvm_vcpu_unmap(&svm->vcpu, &map, true); return ret; } static int vmsave_interception(struct vcpu_svm *svm) { struct vmcb *nested_vmcb; struct kvm_host_map map; int ret; if (nested_svm_check_permissions(svm)) return 1; ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); if (ret) { if (ret == -EINVAL) kvm_inject_gp(&svm->vcpu, 0); return 1; } nested_vmcb = map.hva; ret = kvm_skip_emulated_instruction(&svm->vcpu); nested_svm_vmloadsave(svm->vmcb, nested_vmcb); kvm_vcpu_unmap(&svm->vcpu, &map, true); return ret; } static int vmrun_interception(struct vcpu_svm *svm) { if (nested_svm_check_permissions(svm)) return 1; return nested_svm_vmrun(svm); } enum { NONE_SVM_INSTR, SVM_INSTR_VMRUN, SVM_INSTR_VMLOAD, SVM_INSTR_VMSAVE, }; /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ static int svm_instr_opcode(struct kvm_vcpu *vcpu) { struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; if (ctxt->b != 0x1 || ctxt->opcode_len != 2) return NONE_SVM_INSTR; switch (ctxt->modrm) { case 0xd8: /* VMRUN */ return SVM_INSTR_VMRUN; case 0xda: /* VMLOAD */ return SVM_INSTR_VMLOAD; case 0xdb: /* VMSAVE */ return SVM_INSTR_VMSAVE; default: break; } return NONE_SVM_INSTR; } static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) { const int guest_mode_exit_codes[] = { [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, }; int (*const svm_instr_handlers[])(struct vcpu_svm *svm) = { [SVM_INSTR_VMRUN] = vmrun_interception, [SVM_INSTR_VMLOAD] = vmload_interception, [SVM_INSTR_VMSAVE] = vmsave_interception, }; struct vcpu_svm *svm = to_svm(vcpu); int ret; if (is_guest_mode(vcpu)) { svm->vmcb->control.exit_code = guest_mode_exit_codes[opcode]; svm->vmcb->control.exit_info_1 = 0; svm->vmcb->control.exit_info_2 = 0; /* Returns '1' or -errno on failure, '0' on success. */ ret = nested_svm_vmexit(svm); if (ret) return ret; return 1; } return svm_instr_handlers[opcode](svm); } /* * #GP handling code. Note that #GP can be triggered under the following two * cases: * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on * some AMD CPUs when EAX of these instructions are in the reserved memory * regions (e.g. SMM memory on host). * 2) VMware backdoor */ static int gp_interception(struct vcpu_svm *svm) { struct kvm_vcpu *vcpu = &svm->vcpu; u32 error_code = svm->vmcb->control.exit_info_1; int opcode; /* Both #GP cases have zero error_code */ if (error_code) goto reinject; /* Decode the instruction for usage later */ if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) goto reinject; opcode = svm_instr_opcode(vcpu); if (opcode == NONE_SVM_INSTR) { if (!enable_vmware_backdoor) goto reinject; /* * VMware backdoor emulation on #GP interception only handles * IN{S}, OUT{S}, and RDPMC. */ if (!is_guest_mode(vcpu)) return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); } else return emulate_svm_instr(vcpu, opcode); reinject: kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); return 1; } void svm_set_gif(struct vcpu_svm *svm, bool value) { if (value) { /* * If VGIF is enabled, the STGI intercept is only added to * detect the opening of the SMI/NMI window; remove it now. * Likewise, clear the VINTR intercept, we will set it * again while processing KVM_REQ_EVENT if needed. */ if (vgif_enabled(svm)) svm_clr_intercept(svm, INTERCEPT_STGI); if (svm_is_intercept(svm, INTERCEPT_VINTR)) svm_clear_vintr(svm); enable_gif(svm); if (svm->vcpu.arch.smi_pending || svm->vcpu.arch.nmi_pending || kvm_cpu_has_injectable_intr(&svm->vcpu)) kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); } else { disable_gif(svm); /* * After a CLGI no interrupts should come. But if vGIF is * in use, we still rely on the VINTR intercept (rather than * STGI) to detect an open interrupt window. */ if (!vgif_enabled(svm)) svm_clear_vintr(svm); } } static int stgi_interception(struct vcpu_svm *svm) { int ret; if (nested_svm_check_permissions(svm)) return 1; ret = kvm_skip_emulated_instruction(&svm->vcpu); svm_set_gif(svm, true); return ret; } static int clgi_interception(struct vcpu_svm *svm) { int ret; if (nested_svm_check_permissions(svm)) return 1; ret = kvm_skip_emulated_instruction(&svm->vcpu); svm_set_gif(svm, false); return ret; } static int invlpga_interception(struct vcpu_svm *svm) { struct kvm_vcpu *vcpu = &svm->vcpu; trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu), kvm_rax_read(&svm->vcpu)); /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu)); return kvm_skip_emulated_instruction(&svm->vcpu); } static int skinit_interception(struct vcpu_svm *svm) { trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu)); kvm_queue_exception(&svm->vcpu, UD_VECTOR); return 1; } static int wbinvd_interception(struct vcpu_svm *svm) { return kvm_emulate_wbinvd(&svm->vcpu); } static int xsetbv_interception(struct vcpu_svm *svm) { u64 new_bv = kvm_read_edx_eax(&svm->vcpu); u32 index = kvm_rcx_read(&svm->vcpu); int err = kvm_set_xcr(&svm->vcpu, index, new_bv); return kvm_complete_insn_gp(&svm->vcpu, err); } static int rdpru_interception(struct vcpu_svm *svm) { kvm_queue_exception(&svm->vcpu, UD_VECTOR); return 1; } static int task_switch_interception(struct vcpu_svm *svm) { u16 tss_selector; int reason; int int_type = svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; uint32_t type = svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; uint32_t idt_v = svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; bool has_error_code = false; u32 error_code = 0; tss_selector = (u16)svm->vmcb->control.exit_info_1; if (svm->vmcb->control.exit_info_2 & (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) reason = TASK_SWITCH_IRET; else if (svm->vmcb->control.exit_info_2 & (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) reason = TASK_SWITCH_JMP; else if (idt_v) reason = TASK_SWITCH_GATE; else reason = TASK_SWITCH_CALL; if (reason == TASK_SWITCH_GATE) { switch (type) { case SVM_EXITINTINFO_TYPE_NMI: svm->vcpu.arch.nmi_injected = false; break; case SVM_EXITINTINFO_TYPE_EXEPT: if (svm->vmcb->control.exit_info_2 & (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { has_error_code = true; error_code = (u32)svm->vmcb->control.exit_info_2; } kvm_clear_exception_queue(&svm->vcpu); break; case SVM_EXITINTINFO_TYPE_INTR: kvm_clear_interrupt_queue(&svm->vcpu); break; default: break; } } if (reason != TASK_SWITCH_GATE || int_type == SVM_EXITINTINFO_TYPE_SOFT || (int_type == SVM_EXITINTINFO_TYPE_EXEPT && (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { if (!skip_emulated_instruction(&svm->vcpu)) return 0; } if (int_type != SVM_EXITINTINFO_TYPE_SOFT) int_vec = -1; return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason, has_error_code, error_code); } static int cpuid_interception(struct vcpu_svm *svm) { return kvm_emulate_cpuid(&svm->vcpu); } static int iret_interception(struct vcpu_svm *svm) { ++svm->vcpu.stat.nmi_window_exits; svm->vcpu.arch.hflags |= HF_IRET_MASK; if (!sev_es_guest(svm->vcpu.kvm)) { svm_clr_intercept(svm, INTERCEPT_IRET); svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu); } kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); return 1; } static int invd_interception(struct vcpu_svm *svm) { /* Treat an INVD instruction as a NOP and just skip it. */ return kvm_skip_emulated_instruction(&svm->vcpu); } static int invlpg_interception(struct vcpu_svm *svm) { if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) return kvm_emulate_instruction(&svm->vcpu, 0); kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1); return kvm_skip_emulated_instruction(&svm->vcpu); } static int emulate_on_interception(struct vcpu_svm *svm) { return kvm_emulate_instruction(&svm->vcpu, 0); } static int rsm_interception(struct vcpu_svm *svm) { return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2); } static int rdpmc_interception(struct vcpu_svm *svm) { int err; if (!nrips) return emulate_on_interception(svm); err = kvm_rdpmc(&svm->vcpu); return kvm_complete_insn_gp(&svm->vcpu, err); } static bool check_selective_cr0_intercepted(struct vcpu_svm *svm, unsigned long val) { unsigned long cr0 = svm->vcpu.arch.cr0; bool ret = false; if (!is_guest_mode(&svm->vcpu) || (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) return false; cr0 &= ~SVM_CR0_SELECTIVE_MASK; val &= ~SVM_CR0_SELECTIVE_MASK; if (cr0 ^ val) { svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); } return ret; } #define CR_VALID (1ULL << 63) static int cr_interception(struct vcpu_svm *svm) { int reg, cr; unsigned long val; int err; if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) return emulate_on_interception(svm); if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) return emulate_on_interception(svm); reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; else cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; err = 0; if (cr >= 16) { /* mov to cr */ cr -= 16; val = kvm_register_read(&svm->vcpu, reg); trace_kvm_cr_write(cr, val); switch (cr) { case 0: if (!check_selective_cr0_intercepted(svm, val)) err = kvm_set_cr0(&svm->vcpu, val); else return 1; break; case 3: err = kvm_set_cr3(&svm->vcpu, val); break; case 4: err = kvm_set_cr4(&svm->vcpu, val); break; case 8: err = kvm_set_cr8(&svm->vcpu, val); break; default: WARN(1, "unhandled write to CR%d", cr); kvm_queue_exception(&svm->vcpu, UD_VECTOR); return 1; } } else { /* mov from cr */ switch (cr) { case 0: val = kvm_read_cr0(&svm->vcpu); break; case 2: val = svm->vcpu.arch.cr2; break; case 3: val = kvm_read_cr3(&svm->vcpu); break; case 4: val = kvm_read_cr4(&svm->vcpu); break; case 8: val = kvm_get_cr8(&svm->vcpu); break; default: WARN(1, "unhandled read from CR%d", cr); kvm_queue_exception(&svm->vcpu, UD_VECTOR); return 1; } kvm_register_write(&svm->vcpu, reg, val); trace_kvm_cr_read(cr, val); } return kvm_complete_insn_gp(&svm->vcpu, err); } static int cr_trap(struct vcpu_svm *svm) { struct kvm_vcpu *vcpu = &svm->vcpu; unsigned long old_value, new_value; unsigned int cr; int ret = 0; new_value = (unsigned long)svm->vmcb->control.exit_info_1; cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; switch (cr) { case 0: old_value = kvm_read_cr0(vcpu); svm_set_cr0(vcpu, new_value); kvm_post_set_cr0(vcpu, old_value, new_value); break; case 4: old_value = kvm_read_cr4(vcpu); svm_set_cr4(vcpu, new_value); kvm_post_set_cr4(vcpu, old_value, new_value); break; case 8: ret = kvm_set_cr8(&svm->vcpu, new_value); break; default: WARN(1, "unhandled CR%d write trap", cr); kvm_queue_exception(vcpu, UD_VECTOR); return 1; } return kvm_complete_insn_gp(vcpu, ret); } static int dr_interception(struct vcpu_svm *svm) { int reg, dr; unsigned long val; int err = 0; if (svm->vcpu.guest_debug == 0) { /* * No more DR vmexits; force a reload of the debug registers * and reenter on this instruction. The next vmexit will * retrieve the full state of the debug registers. */ clr_dr_intercepts(svm); svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; return 1; } if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) return emulate_on_interception(svm); reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; if (dr >= 16) { /* mov to DRn */ dr -= 16; val = kvm_register_read(&svm->vcpu, reg); err = kvm_set_dr(&svm->vcpu, dr, val); } else { kvm_get_dr(&svm->vcpu, dr, &val); kvm_register_write(&svm->vcpu, reg, val); } return kvm_complete_insn_gp(&svm->vcpu, err); } static int cr8_write_interception(struct vcpu_svm *svm) { struct kvm_run *kvm_run = svm->vcpu.run; int r; u8 cr8_prev = kvm_get_cr8(&svm->vcpu); /* instruction emulation calls kvm_set_cr8() */ r = cr_interception(svm); if (lapic_in_kernel(&svm->vcpu)) return r; if (cr8_prev <= kvm_get_cr8(&svm->vcpu)) return r; kvm_run->exit_reason = KVM_EXIT_SET_TPR; return 0; } static int efer_trap(struct vcpu_svm *svm) { struct msr_data msr_info; int ret; /* * Clear the EFER_SVME bit from EFER. The SVM code always sets this * bit in svm_set_efer(), but __kvm_valid_efer() checks it against * whether the guest has X86_FEATURE_SVM - this avoids a failure if * the guest doesn't have X86_FEATURE_SVM. */ msr_info.host_initiated = false; msr_info.index = MSR_EFER; msr_info.data = svm->vmcb->control.exit_info_1 & ~EFER_SVME; ret = kvm_set_msr_common(&svm->vcpu, &msr_info); return kvm_complete_insn_gp(&svm->vcpu, ret); } static int svm_get_msr_feature(struct kvm_msr_entry *msr) { msr->data = 0; switch (msr->index) { case MSR_F10H_DECFG: if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE; break; case MSR_IA32_PERF_CAPABILITIES: return 0; default: return KVM_MSR_RET_INVALID; } return 0; } static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) { struct vcpu_svm *svm = to_svm(vcpu); switch (msr_info->index) { case MSR_STAR: msr_info->data = svm->vmcb->save.star; break; #ifdef CONFIG_X86_64 case MSR_LSTAR: msr_info->data = svm->vmcb->save.lstar; break; case MSR_CSTAR: msr_info->data = svm->vmcb->save.cstar; break; case MSR_KERNEL_GS_BASE: msr_info->data = svm->vmcb->save.kernel_gs_base; break; case MSR_SYSCALL_MASK: msr_info->data = svm->vmcb->save.sfmask; break; #endif case MSR_IA32_SYSENTER_CS: msr_info->data = svm->vmcb->save.sysenter_cs; break; case MSR_IA32_SYSENTER_EIP: msr_info->data = svm->sysenter_eip; break; case MSR_IA32_SYSENTER_ESP: msr_info->data = svm->sysenter_esp; break; case MSR_TSC_AUX: if (!boot_cpu_has(X86_FEATURE_RDTSCP)) return 1; msr_info->data = svm->tsc_aux; break; /* * Nobody will change the following 5 values in the VMCB so we can * safely return them on rdmsr. They will always be 0 until LBRV is * implemented. */ case MSR_IA32_DEBUGCTLMSR: msr_info->data = svm->vmcb->save.dbgctl; break; case MSR_IA32_LASTBRANCHFROMIP: msr_info->data = svm->vmcb->save.br_from; break; case MSR_IA32_LASTBRANCHTOIP: msr_info->data = svm->vmcb->save.br_to; break; case MSR_IA32_LASTINTFROMIP: msr_info->data = svm->vmcb->save.last_excp_from; break; case MSR_IA32_LASTINTTOIP: msr_info->data = svm->vmcb->save.last_excp_to; break; case MSR_VM_HSAVE_PA: msr_info->data = svm->nested.hsave_msr; break; case MSR_VM_CR: msr_info->data = svm->nested.vm_cr_msr; break; case MSR_IA32_SPEC_CTRL: if (!msr_info->host_initiated && !guest_has_spec_ctrl_msr(vcpu)) return 1; msr_info->data = svm->spec_ctrl; break; case MSR_AMD64_VIRT_SPEC_CTRL: if (!msr_info->host_initiated && !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) return 1; msr_info->data = svm->virt_spec_ctrl; break; case MSR_F15H_IC_CFG: { int family, model; family = guest_cpuid_family(vcpu); model = guest_cpuid_model(vcpu); if (family < 0 || model < 0) return kvm_get_msr_common(vcpu, msr_info); msr_info->data = 0; if (family == 0x15 && (model >= 0x2 && model < 0x20)) msr_info->data = 0x1E; } break; case MSR_F10H_DECFG: msr_info->data = svm->msr_decfg; break; default: return kvm_get_msr_common(vcpu, msr_info); } return 0; } static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) { struct vcpu_svm *svm = to_svm(vcpu); if (!sev_es_guest(svm->vcpu.kvm) || !err) return kvm_complete_insn_gp(&svm->vcpu, err); ghcb_set_sw_exit_info_1(svm->ghcb, 1); ghcb_set_sw_exit_info_2(svm->ghcb, X86_TRAP_GP | SVM_EVTINJ_TYPE_EXEPT | SVM_EVTINJ_VALID); return 1; } static int rdmsr_interception(struct vcpu_svm *svm) { return kvm_emulate_rdmsr(&svm->vcpu); } static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) { struct vcpu_svm *svm = to_svm(vcpu); int svm_dis, chg_mask; if (data & ~SVM_VM_CR_VALID_MASK) return 1; chg_mask = SVM_VM_CR_VALID_MASK; if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); svm->nested.vm_cr_msr &= ~chg_mask; svm->nested.vm_cr_msr |= (data & chg_mask); svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; /* check for svm_disable while efer.svme is set */ if (svm_dis && (vcpu->arch.efer & EFER_SVME)) return 1; return 0; } static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) { struct vcpu_svm *svm = to_svm(vcpu); u32 ecx = msr->index; u64 data = msr->data; switch (ecx) { case MSR_IA32_CR_PAT: if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) return 1; vcpu->arch.pat = data; svm->vmcb->save.g_pat = data; vmcb_mark_dirty(svm->vmcb, VMCB_NPT); break; case MSR_IA32_SPEC_CTRL: if (!msr->host_initiated && !guest_has_spec_ctrl_msr(vcpu)) return 1; if (kvm_spec_ctrl_test_value(data)) return 1; svm->spec_ctrl = data; if (!data) break; /* * For non-nested: * When it's written (to non-zero) for the first time, pass * it through. * * For nested: * The handling of the MSR bitmap for L2 guests is done in * nested_svm_vmrun_msrpm. * We update the L1 MSR bit as well since it will end up * touching the MSR anyway now. */ set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); break; case MSR_IA32_PRED_CMD: if (!msr->host_initiated && !guest_has_pred_cmd_msr(vcpu)) return 1; if (data & ~PRED_CMD_IBPB) return 1; if (!boot_cpu_has(X86_FEATURE_IBPB)) return 1; if (!data) break; wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1); break; case MSR_AMD64_VIRT_SPEC_CTRL: if (!msr->host_initiated && !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) return 1; if (data & ~SPEC_CTRL_SSBD) return 1; svm->virt_spec_ctrl = data; break; case MSR_STAR: svm->vmcb->save.star = data; break; #ifdef CONFIG_X86_64 case MSR_LSTAR: svm->vmcb->save.lstar = data; break; case MSR_CSTAR: svm->vmcb->save.cstar = data; break; case MSR_KERNEL_GS_BASE: svm->vmcb->save.kernel_gs_base = data; break; case MSR_SYSCALL_MASK: svm->vmcb->save.sfmask = data; break; #endif case MSR_IA32_SYSENTER_CS: svm->vmcb->save.sysenter_cs = data; break; case MSR_IA32_SYSENTER_EIP: svm->sysenter_eip = data; svm->vmcb->save.sysenter_eip = data; break; case MSR_IA32_SYSENTER_ESP: svm->sysenter_esp = data; svm->vmcb->save.sysenter_esp = data; break; case MSR_TSC_AUX: if (!boot_cpu_has(X86_FEATURE_RDTSCP)) return 1; /* * This is rare, so we update the MSR here instead of using * direct_access_msrs. Doing that would require a rdmsr in * svm_vcpu_put. */ svm->tsc_aux = data; wrmsrl(MSR_TSC_AUX, svm->tsc_aux); break; case MSR_IA32_DEBUGCTLMSR: if (!boot_cpu_has(X86_FEATURE_LBRV)) { vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n", __func__, data); break; } if (data & DEBUGCTL_RESERVED_BITS) return 1; svm->vmcb->save.dbgctl = data; vmcb_mark_dirty(svm->vmcb, VMCB_LBR); if (data & (1ULL<<0)) svm_enable_lbrv(vcpu); else svm_disable_lbrv(vcpu); break; case MSR_VM_HSAVE_PA: svm->nested.hsave_msr = data; break; case MSR_VM_CR: return svm_set_vm_cr(vcpu, data); case MSR_VM_IGNNE: vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data); break; case MSR_F10H_DECFG: { struct kvm_msr_entry msr_entry; msr_entry.index = msr->index; if (svm_get_msr_feature(&msr_entry)) return 1; /* Check the supported bits */ if (data & ~msr_entry.data) return 1; /* Don't allow the guest to change a bit, #GP */ if (!msr->host_initiated && (data ^ msr_entry.data)) return 1; svm->msr_decfg = data; break; } case MSR_IA32_APICBASE: if (kvm_vcpu_apicv_active(vcpu)) avic_update_vapic_bar(to_svm(vcpu), data); fallthrough; default: return kvm_set_msr_common(vcpu, msr); } return 0; } static int wrmsr_interception(struct vcpu_svm *svm) { return kvm_emulate_wrmsr(&svm->vcpu); } static int msr_interception(struct vcpu_svm *svm) { if (svm->vmcb->control.exit_info_1) return wrmsr_interception(svm); else return rdmsr_interception(svm); } static int interrupt_window_interception(struct vcpu_svm *svm) { kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); svm_clear_vintr(svm); /* * For AVIC, the only reason to end up here is ExtINTs. * In this case AVIC was temporarily disabled for * requesting the IRQ window and we have to re-enable it. */ svm_toggle_avic_for_irq_window(&svm->vcpu, true); ++svm->vcpu.stat.irq_window_exits; return 1; } static int pause_interception(struct vcpu_svm *svm) { struct kvm_vcpu *vcpu = &svm->vcpu; bool in_kernel; /* * CPL is not made available for an SEV-ES guest, therefore * vcpu->arch.preempted_in_kernel can never be true. Just * set in_kernel to false as well. */ in_kernel = !sev_es_guest(svm->vcpu.kvm) && svm_get_cpl(vcpu) == 0; if (!kvm_pause_in_guest(vcpu->kvm)) grow_ple_window(vcpu); kvm_vcpu_on_spin(vcpu, in_kernel); return 1; } static int nop_interception(struct vcpu_svm *svm) { return kvm_skip_emulated_instruction(&(svm->vcpu)); } static int monitor_interception(struct vcpu_svm *svm) { printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n"); return nop_interception(svm); } static int mwait_interception(struct vcpu_svm *svm) { printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n"); return nop_interception(svm); } static int invpcid_interception(struct vcpu_svm *svm) { struct kvm_vcpu *vcpu = &svm->vcpu; unsigned long type; gva_t gva; if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { kvm_queue_exception(vcpu, UD_VECTOR); return 1; } /* * For an INVPCID intercept: * EXITINFO1 provides the linear address of the memory operand. * EXITINFO2 provides the contents of the register operand. */ type = svm->vmcb->control.exit_info_2; gva = svm->vmcb->control.exit_info_1; if (type > 3) { kvm_inject_gp(vcpu, 0); return 1; } return kvm_handle_invpcid(vcpu, type, gva); } static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = { [SVM_EXIT_READ_CR0] = cr_interception, [SVM_EXIT_READ_CR3] = cr_interception, [SVM_EXIT_READ_CR4] = cr_interception, [SVM_EXIT_READ_CR8] = cr_interception, [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, [SVM_EXIT_WRITE_CR0] = cr_interception, [SVM_EXIT_WRITE_CR3] = cr_interception, [SVM_EXIT_WRITE_CR4] = cr_interception, [SVM_EXIT_WRITE_CR8] = cr8_write_interception, [SVM_EXIT_READ_DR0] = dr_interception, [SVM_EXIT_READ_DR1] = dr_interception, [SVM_EXIT_READ_DR2] = dr_interception, [SVM_EXIT_READ_DR3] = dr_interception, [SVM_EXIT_READ_DR4] = dr_interception, [SVM_EXIT_READ_DR5] = dr_interception, [SVM_EXIT_READ_DR6] = dr_interception, [SVM_EXIT_READ_DR7] = dr_interception, [SVM_EXIT_WRITE_DR0] = dr_interception, [SVM_EXIT_WRITE_DR1] = dr_interception, [SVM_EXIT_WRITE_DR2] = dr_interception, [SVM_EXIT_WRITE_DR3] = dr_interception, [SVM_EXIT_WRITE_DR4] = dr_interception, [SVM_EXIT_WRITE_DR5] = dr_interception, [SVM_EXIT_WRITE_DR6] = dr_interception, [SVM_EXIT_WRITE_DR7] = dr_interception, [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, [SVM_EXIT_INTR] = intr_interception, [SVM_EXIT_NMI] = nmi_interception, [SVM_EXIT_SMI] = nop_on_interception, [SVM_EXIT_INIT] = nop_on_interception, [SVM_EXIT_VINTR] = interrupt_window_interception, [SVM_EXIT_RDPMC] = rdpmc_interception, [SVM_EXIT_CPUID] = cpuid_interception, [SVM_EXIT_IRET] = iret_interception, [SVM_EXIT_INVD] = invd_interception, [SVM_EXIT_PAUSE] = pause_interception, [SVM_EXIT_HLT] = halt_interception, [SVM_EXIT_INVLPG] = invlpg_interception, [SVM_EXIT_INVLPGA] = invlpga_interception, [SVM_EXIT_IOIO] = io_interception, [SVM_EXIT_MSR] = msr_interception, [SVM_EXIT_TASK_SWITCH] = task_switch_interception, [SVM_EXIT_SHUTDOWN] = shutdown_interception, [SVM_EXIT_VMRUN] = vmrun_interception, [SVM_EXIT_VMMCALL] = vmmcall_interception, [SVM_EXIT_VMLOAD] = vmload_interception, [SVM_EXIT_VMSAVE] = vmsave_interception, [SVM_EXIT_STGI] = stgi_interception, [SVM_EXIT_CLGI] = clgi_interception, [SVM_EXIT_SKINIT] = skinit_interception, [SVM_EXIT_WBINVD] = wbinvd_interception, [SVM_EXIT_MONITOR] = monitor_interception, [SVM_EXIT_MWAIT] = mwait_interception, [SVM_EXIT_XSETBV] = xsetbv_interception, [SVM_EXIT_RDPRU] = rdpru_interception, [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, [SVM_EXIT_INVPCID] = invpcid_interception, [SVM_EXIT_NPF] = npf_interception, [SVM_EXIT_RSM] = rsm_interception, [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, }; static void dump_vmcb(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb_control_area *control = &svm->vmcb->control; struct vmcb_save_area *save = &svm->vmcb->save; if (!dump_invalid_vmcb) { pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); return; } pr_err("VMCB Control Area:\n"); pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); pr_err("%-20s%08x %08x\n", "intercepts:", control->intercepts[INTERCEPT_WORD3], control->intercepts[INTERCEPT_WORD4]); pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); pr_err("%-20s%d\n", "pause filter threshold:", control->pause_filter_thresh); pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); pr_err("%-20s%d\n", "asid:", control->asid); pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); pr_err("%-20s%08x\n", "int_vector:", control->int_vector); pr_err("%-20s%08x\n", "int_state:", control->int_state); pr_err("%-20s%08x\n", "exit_code:", control->exit_code); pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); pr_err("%-20s%08x\n", "event_inj:", control->event_inj); pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); pr_err("VMCB State Save Area:\n"); pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", "es:", save->es.selector, save->es.attrib, save->es.limit, save->es.base); pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", "cs:", save->cs.selector, save->cs.attrib, save->cs.limit, save->cs.base); pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", "ss:", save->ss.selector, save->ss.attrib, save->ss.limit, save->ss.base); pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", "ds:", save->ds.selector, save->ds.attrib, save->ds.limit, save->ds.base); pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", "fs:", save->fs.selector, save->fs.attrib, save->fs.limit, save->fs.base); pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", "gs:", save->gs.selector, save->gs.attrib, save->gs.limit, save->gs.base); pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", "gdtr:", save->gdtr.selector, save->gdtr.attrib, save->gdtr.limit, save->gdtr.base); pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", "ldtr:", save->ldtr.selector, save->ldtr.attrib, save->ldtr.limit, save->ldtr.base); pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", "idtr:", save->idtr.selector, save->idtr.attrib, save->idtr.limit, save->idtr.base); pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", "tr:", save->tr.selector, save->tr.attrib, save->tr.limit, save->tr.base); pr_err("cpl: %d efer: %016llx\n", save->cpl, save->efer); pr_err("%-15s %016llx %-13s %016llx\n", "cr0:", save->cr0, "cr2:", save->cr2); pr_err("%-15s %016llx %-13s %016llx\n", "cr3:", save->cr3, "cr4:", save->cr4); pr_err("%-15s %016llx %-13s %016llx\n", "dr6:", save->dr6, "dr7:", save->dr7); pr_err("%-15s %016llx %-13s %016llx\n", "rip:", save->rip, "rflags:", save->rflags); pr_err("%-15s %016llx %-13s %016llx\n", "rsp:", save->rsp, "rax:", save->rax); pr_err("%-15s %016llx %-13s %016llx\n", "star:", save->star, "lstar:", save->lstar); pr_err("%-15s %016llx %-13s %016llx\n", "cstar:", save->cstar, "sfmask:", save->sfmask); pr_err("%-15s %016llx %-13s %016llx\n", "kernel_gs_base:", save->kernel_gs_base, "sysenter_cs:", save->sysenter_cs); pr_err("%-15s %016llx %-13s %016llx\n", "sysenter_esp:", save->sysenter_esp, "sysenter_eip:", save->sysenter_eip); pr_err("%-15s %016llx %-13s %016llx\n", "gpat:", save->g_pat, "dbgctl:", save->dbgctl); pr_err("%-15s %016llx %-13s %016llx\n", "br_from:", save->br_from, "br_to:", save->br_to); pr_err("%-15s %016llx %-13s %016llx\n", "excp_from:", save->last_excp_from, "excp_to:", save->last_excp_to); } static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) { if (exit_code < ARRAY_SIZE(svm_exit_handlers) && svm_exit_handlers[exit_code]) return 0; vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); dump_vmcb(vcpu); vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; vcpu->run->internal.ndata = 2; vcpu->run->internal.data[0] = exit_code; vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; return -EINVAL; } int svm_invoke_exit_handler(struct vcpu_svm *svm, u64 exit_code) { if (svm_handle_invalid_exit(&svm->vcpu, exit_code)) return 0; #ifdef CONFIG_RETPOLINE if (exit_code == SVM_EXIT_MSR) return msr_interception(svm); else if (exit_code == SVM_EXIT_VINTR) return interrupt_window_interception(svm); else if (exit_code == SVM_EXIT_INTR) return intr_interception(svm); else if (exit_code == SVM_EXIT_HLT) return halt_interception(svm); else if (exit_code == SVM_EXIT_NPF) return npf_interception(svm); #endif return svm_exit_handlers[exit_code](svm); } static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code) { struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; *info1 = control->exit_info_1; *info2 = control->exit_info_2; *intr_info = control->exit_int_info; if ((*intr_info & SVM_EXITINTINFO_VALID) && (*intr_info & SVM_EXITINTINFO_VALID_ERR)) *error_code = control->exit_int_info_err; else *error_code = 0; } static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) { struct vcpu_svm *svm = to_svm(vcpu); struct kvm_run *kvm_run = vcpu->run; u32 exit_code = svm->vmcb->control.exit_code; trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM); /* SEV-ES guests must use the CR write traps to track CR registers. */ if (!sev_es_guest(vcpu->kvm)) { if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) vcpu->arch.cr0 = svm->vmcb->save.cr0; if (npt_enabled) vcpu->arch.cr3 = svm->vmcb->save.cr3; } if (is_guest_mode(vcpu)) { int vmexit; trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM); vmexit = nested_svm_exit_special(svm); if (vmexit == NESTED_EXIT_CONTINUE) vmexit = nested_svm_exit_handled(svm); if (vmexit == NESTED_EXIT_DONE) return 1; } if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; kvm_run->fail_entry.hardware_entry_failure_reason = svm->vmcb->control.exit_code; kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; dump_vmcb(vcpu); return 0; } if (is_external_interrupt(svm->vmcb->control.exit_int_info) && exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR && exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH && exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI) printk(KERN_ERR "%s: unexpected exit_int_info 0x%x " "exit_code 0x%x\n", __func__, svm->vmcb->control.exit_int_info, exit_code); if (exit_fastpath != EXIT_FASTPATH_NONE) return 1; return svm_invoke_exit_handler(svm, exit_code); } static void reload_tss(struct kvm_vcpu *vcpu) { struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); sd->tss_desc->type = 9; /* available 32/64-bit TSS */ load_TR_desc(); } static void pre_svm_run(struct vcpu_svm *svm) { struct svm_cpu_data *sd = per_cpu(svm_data, svm->vcpu.cpu); if (sev_guest(svm->vcpu.kvm)) return pre_sev_run(svm, svm->vcpu.cpu); /* FIXME: handle wraparound of asid_generation */ if (svm->asid_generation != sd->asid_generation) new_asid(svm, sd); } static void svm_inject_nmi(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; vcpu->arch.hflags |= HF_NMI_MASK; if (!sev_es_guest(svm->vcpu.kvm)) svm_set_intercept(svm, INTERCEPT_IRET); ++vcpu->stat.nmi_injections; } static void svm_set_irq(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); BUG_ON(!(gif_set(svm))); trace_kvm_inj_virq(vcpu->arch.interrupt.nr); ++vcpu->stat.irq_injections; svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR; } static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) { struct vcpu_svm *svm = to_svm(vcpu); /* * SEV-ES guests must always keep the CR intercepts cleared. CR * tracking is done using the CR write traps. */ if (sev_es_guest(vcpu->kvm)) return; if (nested_svm_virtualize_tpr(vcpu)) return; svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); if (irr == -1) return; if (tpr >= irr) svm_set_intercept(svm, INTERCEPT_CR8_WRITE); } bool svm_nmi_blocked(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb *vmcb = svm->vmcb; bool ret; if (!gif_set(svm)) return true; if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) return false; ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) || (svm->vcpu.arch.hflags & HF_NMI_MASK); return ret; } static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) { struct vcpu_svm *svm = to_svm(vcpu); if (svm->nested.nested_run_pending) return -EBUSY; /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) return -EBUSY; return !svm_nmi_blocked(vcpu); } static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); return !!(svm->vcpu.arch.hflags & HF_NMI_MASK); } static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) { struct vcpu_svm *svm = to_svm(vcpu); if (masked) { svm->vcpu.arch.hflags |= HF_NMI_MASK; if (!sev_es_guest(svm->vcpu.kvm)) svm_set_intercept(svm, INTERCEPT_IRET); } else { svm->vcpu.arch.hflags &= ~HF_NMI_MASK; if (!sev_es_guest(svm->vcpu.kvm)) svm_clr_intercept(svm, INTERCEPT_IRET); } } bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb *vmcb = svm->vmcb; if (!gif_set(svm)) return true; if (sev_es_guest(svm->vcpu.kvm)) { /* * SEV-ES guests to not expose RFLAGS. Use the VMCB interrupt mask * bit to determine the state of the IF flag. */ if (!(vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK)) return true; } else if (is_guest_mode(vcpu)) { /* As long as interrupts are being delivered... */ if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) ? !(svm->nested.hsave->save.rflags & X86_EFLAGS_IF) : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) return true; /* ... vmexits aren't blocked by the interrupt shadow */ if (nested_exit_on_intr(svm)) return false; } else { if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) return true; } return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); } static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) { struct vcpu_svm *svm = to_svm(vcpu); if (svm->nested.nested_run_pending) return -EBUSY; /* * An IRQ must not be injected into L2 if it's supposed to VM-Exit, * e.g. if the IRQ arrived asynchronously after checking nested events. */ if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) return -EBUSY; return !svm_interrupt_blocked(vcpu); } static void svm_enable_irq_window(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); /* * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes * 1, because that's a separate STGI/VMRUN intercept. The next time we * get that intercept, this function will be called again though and * we'll get the vintr intercept. However, if the vGIF feature is * enabled, the STGI interception will not occur. Enable the irq * window under the assumption that the hardware will set the GIF. */ if (vgif_enabled(svm) || gif_set(svm)) { /* * IRQ window is not needed when AVIC is enabled, * unless we have pending ExtINT since it cannot be injected * via AVIC. In such case, we need to temporarily disable AVIC, * and fallback to injecting IRQ via V_IRQ. */ svm_toggle_avic_for_irq_window(vcpu, false); svm_set_vintr(svm); } } static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK) return; /* IRET will cause a vm exit */ if (!gif_set(svm)) { if (vgif_enabled(svm)) svm_set_intercept(svm, INTERCEPT_STGI); return; /* STGI will cause a vm exit */ } /* * Something prevents NMI from been injected. Single step over possible * problem (IRET or exception injection or interrupt shadow) */ svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); svm->nmi_singlestep = true; svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); } static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr) { return 0; } static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) { return 0; } void svm_flush_tlb(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); /* * Flush only the current ASID even if the TLB flush was invoked via * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and * unconditionally does a TLB flush on both nested VM-Enter and nested * VM-Exit (via kvm_mmu_reset_context()). */ if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; else svm->asid_generation--; } static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) { struct vcpu_svm *svm = to_svm(vcpu); invlpga(gva, svm->vmcb->control.asid); } static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); if (nested_svm_virtualize_tpr(vcpu)) return; if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; kvm_set_cr8(vcpu, cr8); } } static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); u64 cr8; if (nested_svm_virtualize_tpr(vcpu) || kvm_vcpu_apicv_active(vcpu)) return; cr8 = kvm_get_cr8(vcpu); svm->vmcb->control.int_ctl &= ~V_TPR_MASK; svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; } static void svm_complete_interrupts(struct vcpu_svm *svm) { u8 vector; int type; u32 exitintinfo = svm->vmcb->control.exit_int_info; unsigned int3_injected = svm->int3_injected; svm->int3_injected = 0; /* * If we've made progress since setting HF_IRET_MASK, we've * executed an IRET and can allow NMI injection. */ if ((svm->vcpu.arch.hflags & HF_IRET_MASK) && (sev_es_guest(svm->vcpu.kvm) || kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip)) { svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK); kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); } svm->vcpu.arch.nmi_injected = false; kvm_clear_exception_queue(&svm->vcpu); kvm_clear_interrupt_queue(&svm->vcpu); if (!(exitintinfo & SVM_EXITINTINFO_VALID)) return; kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; switch (type) { case SVM_EXITINTINFO_TYPE_NMI: svm->vcpu.arch.nmi_injected = true; break; case SVM_EXITINTINFO_TYPE_EXEPT: /* * Never re-inject a #VC exception. */ if (vector == X86_TRAP_VC) break; /* * In case of software exceptions, do not reinject the vector, * but re-execute the instruction instead. Rewind RIP first * if we emulated INT3 before. */ if (kvm_exception_is_soft(vector)) { if (vector == BP_VECTOR && int3_injected && kvm_is_linear_rip(&svm->vcpu, svm->int3_rip)) kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) - int3_injected); break; } if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { u32 err = svm->vmcb->control.exit_int_info_err; kvm_requeue_exception_e(&svm->vcpu, vector, err); } else kvm_requeue_exception(&svm->vcpu, vector); break; case SVM_EXITINTINFO_TYPE_INTR: kvm_queue_interrupt(&svm->vcpu, vector, false); break; default: break; } } static void svm_cancel_injection(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb_control_area *control = &svm->vmcb->control; control->exit_int_info = control->event_inj; control->exit_int_info_err = control->event_inj_err; control->event_inj = 0; svm_complete_interrupts(svm); } static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) { if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR && to_svm(vcpu)->vmcb->control.exit_info_1) return handle_fastpath_set_msr_irqoff(vcpu); return EXIT_FASTPATH_NONE; } static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, struct vcpu_svm *svm) { /* * VMENTER enables interrupts (host state), but the kernel state is * interrupts disabled when this is invoked. Also tell RCU about * it. This is the same logic as for exit_to_user_mode(). * * This ensures that e.g. latency analysis on the host observes * guest mode as interrupt enabled. * * guest_enter_irqoff() informs context tracking about the * transition to guest mode and if enabled adjusts RCU state * accordingly. */ instrumentation_begin(); trace_hardirqs_on_prepare(); lockdep_hardirqs_on_prepare(CALLER_ADDR0); instrumentation_end(); guest_enter_irqoff(); lockdep_hardirqs_on(CALLER_ADDR0); if (sev_es_guest(svm->vcpu.kvm)) { __svm_sev_es_vcpu_run(svm->vmcb_pa); } else { struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); __svm_vcpu_run(svm->vmcb_pa, (unsigned long *)&svm->vcpu.arch.regs); vmload(__sme_page_pa(sd->save_area)); } /* * VMEXIT disables interrupts (host state), but tracing and lockdep * have them in state 'on' as recorded before entering guest mode. * Same as enter_from_user_mode(). * * guest_exit_irqoff() restores host context and reinstates RCU if * enabled and required. * * This needs to be done before the below as native_read_msr() * contains a tracepoint and x86_spec_ctrl_restore_host() calls * into world and some more. */ lockdep_hardirqs_off(CALLER_ADDR0); guest_exit_irqoff(); instrumentation_begin(); trace_hardirqs_off_finish(); instrumentation_end(); } static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); trace_kvm_entry(vcpu); svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; /* * Disable singlestep if we're injecting an interrupt/exception. * We don't want our modified rflags to be pushed on the stack where * we might not be able to easily reset them if we disabled NMI * singlestep later. */ if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { /* * Event injection happens before external interrupts cause a * vmexit and interrupts are disabled here, so smp_send_reschedule * is enough to force an immediate vmexit. */ disable_nmi_singlestep(svm); smp_send_reschedule(vcpu->cpu); } pre_svm_run(svm); sync_lapic_to_cr8(vcpu); if (unlikely(svm->asid != svm->vmcb->control.asid)) { svm->vmcb->control.asid = svm->asid; vmcb_mark_dirty(svm->vmcb, VMCB_ASID); } svm->vmcb->save.cr2 = vcpu->arch.cr2; /* * Run with all-zero DR6 unless needed, so that we can get the exact cause * of a #DB. */ if (unlikely(svm->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) svm_set_dr6(svm, vcpu->arch.dr6); else svm_set_dr6(svm, DR6_ACTIVE_LOW); clgi(); kvm_load_guest_xsave_state(vcpu); kvm_wait_lapic_expire(vcpu); /* * If this vCPU has touched SPEC_CTRL, restore the guest's value if * it's non-zero. Since vmentry is serialising on affected CPUs, there * is no need to worry about the conditional branch over the wrmsr * being speculatively taken. */ x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl); svm_vcpu_enter_exit(vcpu, svm); /* * We do not use IBRS in the kernel. If this vCPU has used the * SPEC_CTRL MSR it may have left it on; save the value and * turn it off. This is much more efficient than blindly adding * it to the atomic save/restore list. Especially as the former * (Saving guest MSRs on vmexit) doesn't even exist in KVM. * * For non-nested case: * If the L01 MSR bitmap does not intercept the MSR, then we need to * save it. * * For nested case: * If the L02 MSR bitmap does not intercept the MSR, then we need to * save it. */ if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); if (!sev_es_guest(svm->vcpu.kvm)) reload_tss(vcpu); x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl); if (!sev_es_guest(svm->vcpu.kvm)) { vcpu->arch.cr2 = svm->vmcb->save.cr2; vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; } if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) kvm_before_interrupt(&svm->vcpu); kvm_load_host_xsave_state(vcpu); stgi(); /* Any pending NMI will happen here */ if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) kvm_after_interrupt(&svm->vcpu); sync_cr8_to_lapic(vcpu); svm->next_rip = 0; if (is_guest_mode(&svm->vcpu)) { sync_nested_vmcb_control(svm); svm->nested.nested_run_pending = 0; } svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; vmcb_mark_all_clean(svm->vmcb); /* if exit due to PF check for async PF */ if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) svm->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); if (npt_enabled) { vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR); vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR); } /* * We need to handle MC intercepts here before the vcpu has a chance to * change the physical cpu */ if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + MC_VECTOR)) svm_handle_mce(svm); svm_complete_interrupts(svm); if (is_guest_mode(vcpu)) return EXIT_FASTPATH_NONE; return svm_exit_handlers_fastpath(vcpu); } static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long root, int root_level) { struct vcpu_svm *svm = to_svm(vcpu); unsigned long cr3; cr3 = __sme_set(root); if (npt_enabled) { svm->vmcb->control.nested_cr3 = cr3; vmcb_mark_dirty(svm->vmcb, VMCB_NPT); /* Loading L2's CR3 is handled by enter_svm_guest_mode. */ if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) return; cr3 = vcpu->arch.cr3; } svm->vmcb->save.cr3 = cr3; vmcb_mark_dirty(svm->vmcb, VMCB_CR); } static int is_disabled(void) { u64 vm_cr; rdmsrl(MSR_VM_CR, vm_cr); if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) return 1; return 0; } static void svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) { /* * Patch in the VMMCALL instruction: */ hypercall[0] = 0x0f; hypercall[1] = 0x01; hypercall[2] = 0xd9; } static int __init svm_check_processor_compat(void) { return 0; } static bool svm_cpu_has_accelerated_tpr(void) { return false; } /* * The kvm parameter can be NULL (module initialization, or invocation before * VM creation). Be sure to check the kvm parameter before using it. */ static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) { switch (index) { case MSR_IA32_MCG_EXT_CTL: case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: return false; case MSR_IA32_SMBASE: /* SEV-ES guests do not support SMM, so report false */ if (kvm && sev_es_guest(kvm)) return false; break; default: break; } return true; } static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) { return 0; } static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct kvm_cpuid_entry2 *best; vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && boot_cpu_has(X86_FEATURE_XSAVE) && boot_cpu_has(X86_FEATURE_XSAVES); /* Update nrips enabled cache */ svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) && guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS); /* Check again if INVPCID interception if required */ svm_check_invpcid(svm); /* For sev guests, the memory encryption bit is not reserved in CR3. */ if (sev_guest(vcpu->kvm)) { best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0); if (best) vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); } if (!kvm_vcpu_apicv_active(vcpu)) return; /* * AVIC does not work with an x2APIC mode guest. If the X2APIC feature * is exposed to the guest, disable AVIC. */ if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC)) kvm_request_apicv_update(vcpu->kvm, false, APICV_INHIBIT_REASON_X2APIC); /* * Currently, AVIC does not work with nested virtualization. * So, we disable AVIC when cpuid for SVM is set in the L1 guest. */ if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM)) kvm_request_apicv_update(vcpu->kvm, false, APICV_INHIBIT_REASON_NESTED); } static bool svm_has_wbinvd_exit(void) { return true; } #define PRE_EX(exit) { .exit_code = (exit), \ .stage = X86_ICPT_PRE_EXCEPT, } #define POST_EX(exit) { .exit_code = (exit), \ .stage = X86_ICPT_POST_EXCEPT, } #define POST_MEM(exit) { .exit_code = (exit), \ .stage = X86_ICPT_POST_MEMACCESS, } static const struct __x86_intercept { u32 exit_code; enum x86_intercept_stage stage; } x86_intercept_map[] = { [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), }; #undef PRE_EX #undef POST_EX #undef POST_MEM static int svm_check_intercept(struct kvm_vcpu *vcpu, struct x86_instruction_info *info, enum x86_intercept_stage stage, struct x86_exception *exception) { struct vcpu_svm *svm = to_svm(vcpu); int vmexit, ret = X86EMUL_CONTINUE; struct __x86_intercept icpt_info; struct vmcb *vmcb = svm->vmcb; if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) goto out; icpt_info = x86_intercept_map[info->intercept]; if (stage != icpt_info.stage) goto out; switch (icpt_info.exit_code) { case SVM_EXIT_READ_CR0: if (info->intercept == x86_intercept_cr_read) icpt_info.exit_code += info->modrm_reg; break; case SVM_EXIT_WRITE_CR0: { unsigned long cr0, val; if (info->intercept == x86_intercept_cr_write) icpt_info.exit_code += info->modrm_reg; if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || info->intercept == x86_intercept_clts) break; if (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))) break; cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; if (info->intercept == x86_intercept_lmsw) { cr0 &= 0xfUL; val &= 0xfUL; /* lmsw can't clear PE - catch this here */ if (cr0 & X86_CR0_PE) val |= X86_CR0_PE; } if (cr0 ^ val) icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; break; } case SVM_EXIT_READ_DR0: case SVM_EXIT_WRITE_DR0: icpt_info.exit_code += info->modrm_reg; break; case SVM_EXIT_MSR: if (info->intercept == x86_intercept_wrmsr) vmcb->control.exit_info_1 = 1; else vmcb->control.exit_info_1 = 0; break; case SVM_EXIT_PAUSE: /* * We get this for NOP only, but pause * is rep not, check this here */ if (info->rep_prefix != REPE_PREFIX) goto out; break; case SVM_EXIT_IOIO: { u64 exit_info; u32 bytes; if (info->intercept == x86_intercept_in || info->intercept == x86_intercept_ins) { exit_info = ((info->src_val & 0xffff) << 16) | SVM_IOIO_TYPE_MASK; bytes = info->dst_bytes; } else { exit_info = (info->dst_val & 0xffff) << 16; bytes = info->src_bytes; } if (info->intercept == x86_intercept_outs || info->intercept == x86_intercept_ins) exit_info |= SVM_IOIO_STR_MASK; if (info->rep_prefix) exit_info |= SVM_IOIO_REP_MASK; bytes = min(bytes, 4u); exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); vmcb->control.exit_info_1 = exit_info; vmcb->control.exit_info_2 = info->next_rip; break; } default: break; } /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ if (static_cpu_has(X86_FEATURE_NRIPS)) vmcb->control.next_rip = info->next_rip; vmcb->control.exit_code = icpt_info.exit_code; vmexit = nested_svm_exit_handled(svm); ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED : X86EMUL_CONTINUE; out: return ret; } static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) { } static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) { if (!kvm_pause_in_guest(vcpu->kvm)) shrink_ple_window(vcpu); } static void svm_setup_mce(struct kvm_vcpu *vcpu) { /* [63:9] are reserved. */ vcpu->arch.mcg_cap &= 0x1ff; } bool svm_smi_blocked(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); /* Per APM Vol.2 15.22.2 "Response to SMI" */ if (!gif_set(svm)) return true; return is_smm(vcpu); } static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) { struct vcpu_svm *svm = to_svm(vcpu); if (svm->nested.nested_run_pending) return -EBUSY; /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) return -EBUSY; return !svm_smi_blocked(vcpu); } static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate) { struct vcpu_svm *svm = to_svm(vcpu); int ret; if (is_guest_mode(vcpu)) { /* FED8h - SVM Guest */ put_smstate(u64, smstate, 0x7ed8, 1); /* FEE0h - SVM Guest VMCB Physical Address */ put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa); svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; ret = nested_svm_vmexit(svm); if (ret) return ret; } return 0; } static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) { struct vcpu_svm *svm = to_svm(vcpu); struct kvm_host_map map; int ret = 0; if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) { u64 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0); u64 guest = GET_SMSTATE(u64, smstate, 0x7ed8); u64 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0); if (guest) { if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM)) return 1; if (!(saved_efer & EFER_SVME)) return 1; if (kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL) return 1; if (svm_allocate_nested(svm)) return 1; ret = enter_svm_guest_mode(svm, vmcb12_gpa, map.hva); kvm_vcpu_unmap(&svm->vcpu, &map, true); } } return ret; } static void svm_enable_smi_window(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); if (!gif_set(svm)) { if (vgif_enabled(svm)) svm_set_intercept(svm, INTERCEPT_STGI); /* STGI will cause a vm exit */ } else { /* We must be in SMM; RSM will cause a vmexit anyway. */ } } static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len) { bool smep, smap, is_user; unsigned long cr4; /* * When the guest is an SEV-ES guest, emulation is not possible. */ if (sev_es_guest(vcpu->kvm)) return false; /* * Detect and workaround Errata 1096 Fam_17h_00_0Fh. * * Errata: * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is * possible that CPU microcode implementing DecodeAssist will fail * to read bytes of instruction which caused #NPF. In this case, * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly * return 0 instead of the correct guest instruction bytes. * * This happens because CPU microcode reading instruction bytes * uses a special opcode which attempts to read data using CPL=0 * privileges. The microcode reads CS:RIP and if it hits a SMAP * fault, it gives up and returns no instruction bytes. * * Detection: * We reach here in case CPU supports DecodeAssist, raised #NPF and * returned 0 in GuestIntrBytes field of the VMCB. * First, errata can only be triggered in case vCPU CR4.SMAP=1. * Second, if vCPU CR4.SMEP=1, errata could only be triggered * in case vCPU CPL==3 (Because otherwise guest would have triggered * a SMEP fault instead of #NPF). * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL. * As most guests enable SMAP if they have also enabled SMEP, use above * logic in order to attempt minimize false-positive of detecting errata * while still preserving all cases semantic correctness. * * Workaround: * To determine what instruction the guest was executing, the hypervisor * will have to decode the instruction at the instruction pointer. * * In non SEV guest, hypervisor will be able to read the guest * memory to decode the instruction pointer when insn_len is zero * so we return true to indicate that decoding is possible. * * But in the SEV guest, the guest memory is encrypted with the * guest specific key and hypervisor will not be able to decode the * instruction pointer so we will not able to workaround it. Lets * print the error and request to kill the guest. */ if (likely(!insn || insn_len)) return true; /* * If RIP is invalid, go ahead with emulation which will cause an * internal error exit. */ if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT)) return true; cr4 = kvm_read_cr4(vcpu); smep = cr4 & X86_CR4_SMEP; smap = cr4 & X86_CR4_SMAP; is_user = svm_get_cpl(vcpu) == 3; if (smap && (!smep || is_user)) { if (!sev_guest(vcpu->kvm)) return true; pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n"); kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); } return false; } static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); /* * TODO: Last condition latch INIT signals on vCPU when * vCPU is in guest-mode and vmcb12 defines intercept on INIT. * To properly emulate the INIT intercept, * svm_check_nested_events() should call nested_svm_vmexit() * if an INIT signal is pending. */ return !gif_set(svm) || (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT)); } static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) { if (!sev_es_guest(vcpu->kvm)) return kvm_vcpu_deliver_sipi_vector(vcpu, vector); sev_vcpu_deliver_sipi_vector(vcpu, vector); } static void svm_vm_destroy(struct kvm *kvm) { avic_vm_destroy(kvm); sev_vm_destroy(kvm); } static int svm_vm_init(struct kvm *kvm) { if (!pause_filter_count || !pause_filter_thresh) kvm->arch.pause_in_guest = true; if (avic) { int ret = avic_vm_init(kvm); if (ret) return ret; } kvm_apicv_init(kvm, avic); return 0; } static struct kvm_x86_ops svm_x86_ops __initdata = { .hardware_unsetup = svm_hardware_teardown, .hardware_enable = svm_hardware_enable, .hardware_disable = svm_hardware_disable, .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr, .has_emulated_msr = svm_has_emulated_msr, .vcpu_create = svm_create_vcpu, .vcpu_free = svm_free_vcpu, .vcpu_reset = svm_vcpu_reset, .vm_size = sizeof(struct kvm_svm), .vm_init = svm_vm_init, .vm_destroy = svm_vm_destroy, .prepare_guest_switch = svm_prepare_guest_switch, .vcpu_load = svm_vcpu_load, .vcpu_put = svm_vcpu_put, .vcpu_blocking = svm_vcpu_blocking, .vcpu_unblocking = svm_vcpu_unblocking, .update_exception_bitmap = svm_update_exception_bitmap, .get_msr_feature = svm_get_msr_feature, .get_msr = svm_get_msr, .set_msr = svm_set_msr, .get_segment_base = svm_get_segment_base, .get_segment = svm_get_segment, .set_segment = svm_set_segment, .get_cpl = svm_get_cpl, .get_cs_db_l_bits = kvm_get_cs_db_l_bits, .set_cr0 = svm_set_cr0, .is_valid_cr4 = svm_is_valid_cr4, .set_cr4 = svm_set_cr4, .set_efer = svm_set_efer, .get_idt = svm_get_idt, .set_idt = svm_set_idt, .get_gdt = svm_get_gdt, .set_gdt = svm_set_gdt, .set_dr7 = svm_set_dr7, .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, .cache_reg = svm_cache_reg, .get_rflags = svm_get_rflags, .set_rflags = svm_set_rflags, .tlb_flush_all = svm_flush_tlb, .tlb_flush_current = svm_flush_tlb, .tlb_flush_gva = svm_flush_tlb_gva, .tlb_flush_guest = svm_flush_tlb, .run = svm_vcpu_run, .handle_exit = handle_exit, .skip_emulated_instruction = skip_emulated_instruction, .update_emulated_instruction = NULL, .set_interrupt_shadow = svm_set_interrupt_shadow, .get_interrupt_shadow = svm_get_interrupt_shadow, .patch_hypercall = svm_patch_hypercall, .set_irq = svm_set_irq, .set_nmi = svm_inject_nmi, .queue_exception = svm_queue_exception, .cancel_injection = svm_cancel_injection, .interrupt_allowed = svm_interrupt_allowed, .nmi_allowed = svm_nmi_allowed, .get_nmi_mask = svm_get_nmi_mask, .set_nmi_mask = svm_set_nmi_mask, .enable_nmi_window = svm_enable_nmi_window, .enable_irq_window = svm_enable_irq_window, .update_cr8_intercept = svm_update_cr8_intercept, .set_virtual_apic_mode = svm_set_virtual_apic_mode, .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl, .check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons, .pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl, .load_eoi_exitmap = svm_load_eoi_exitmap, .hwapic_irr_update = svm_hwapic_irr_update, .hwapic_isr_update = svm_hwapic_isr_update, .sync_pir_to_irr = kvm_lapic_find_highest_irr, .apicv_post_state_restore = avic_post_state_restore, .set_tss_addr = svm_set_tss_addr, .set_identity_map_addr = svm_set_identity_map_addr, .get_mt_mask = svm_get_mt_mask, .get_exit_info = svm_get_exit_info, .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, .has_wbinvd_exit = svm_has_wbinvd_exit, .write_l1_tsc_offset = svm_write_l1_tsc_offset, .load_mmu_pgd = svm_load_mmu_pgd, .check_intercept = svm_check_intercept, .handle_exit_irqoff = svm_handle_exit_irqoff, .request_immediate_exit = __kvm_request_immediate_exit, .sched_in = svm_sched_in, .pmu_ops = &amd_pmu_ops, .nested_ops = &svm_nested_ops, .deliver_posted_interrupt = svm_deliver_avic_intr, .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt, .update_pi_irte = svm_update_pi_irte, .setup_mce = svm_setup_mce, .smi_allowed = svm_smi_allowed, .pre_enter_smm = svm_pre_enter_smm, .pre_leave_smm = svm_pre_leave_smm, .enable_smi_window = svm_enable_smi_window, .mem_enc_op = svm_mem_enc_op, .mem_enc_reg_region = svm_register_enc_region, .mem_enc_unreg_region = svm_unregister_enc_region, .can_emulate_instruction = svm_can_emulate_instruction, .apic_init_signal_blocked = svm_apic_init_signal_blocked, .msr_filter_changed = svm_msr_filter_changed, .complete_emulated_msr = svm_complete_emulated_msr, .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, }; static struct kvm_x86_init_ops svm_init_ops __initdata = { .cpu_has_kvm_support = has_svm, .disabled_by_bios = is_disabled, .hardware_setup = svm_hardware_setup, .check_processor_compatibility = svm_check_processor_compat, .runtime_ops = &svm_x86_ops, }; static int __init svm_init(void) { __unused_size_checks(); return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm), THIS_MODULE); } static void __exit svm_exit(void) { kvm_exit(); } module_init(svm_init) module_exit(svm_exit)