/* * Handle caching attributes in page tables (PAT) * * Authors: Venkatesh Pallipadi * Suresh B Siddha * * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_X86_PAT int __read_mostly pat_enabled = 1; static inline void pat_disable(const char *reason) { pat_enabled = 0; printk(KERN_INFO "%s\n", reason); } static int __init nopat(char *str) { pat_disable("PAT support disabled."); return 0; } early_param("nopat", nopat); #else static inline void pat_disable(const char *reason) { (void)reason; } #endif static int debug_enable; static int __init pat_debug_setup(char *str) { debug_enable = 1; return 0; } __setup("debugpat", pat_debug_setup); #define dprintk(fmt, arg...) \ do { if (debug_enable) printk(KERN_INFO fmt, ##arg); } while (0) static u64 __read_mostly boot_pat_state; enum { PAT_UC = 0, /* uncached */ PAT_WC = 1, /* Write combining */ PAT_WT = 4, /* Write Through */ PAT_WP = 5, /* Write Protected */ PAT_WB = 6, /* Write Back (default) */ PAT_UC_MINUS = 7, /* UC, but can be overriden by MTRR */ }; #define PAT(x, y) ((u64)PAT_ ## y << ((x)*8)) void pat_init(void) { u64 pat; if (!pat_enabled) return; if (!cpu_has_pat) { if (!boot_pat_state) { pat_disable("PAT not supported by CPU."); return; } else { /* * If this happens we are on a secondary CPU, but * switched to PAT on the boot CPU. We have no way to * undo PAT. */ printk(KERN_ERR "PAT enabled, " "but not supported by secondary CPU\n"); BUG(); } } /* Set PWT to Write-Combining. All other bits stay the same */ /* * PTE encoding used in Linux: * PAT * |PCD * ||PWT * ||| * 000 WB _PAGE_CACHE_WB * 001 WC _PAGE_CACHE_WC * 010 UC- _PAGE_CACHE_UC_MINUS * 011 UC _PAGE_CACHE_UC * PAT bit unused */ pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) | PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC); /* Boot CPU check */ if (!boot_pat_state) rdmsrl(MSR_IA32_CR_PAT, boot_pat_state); wrmsrl(MSR_IA32_CR_PAT, pat); printk(KERN_INFO "x86 PAT enabled: cpu %d, old 0x%Lx, new 0x%Lx\n", smp_processor_id(), boot_pat_state, pat); } #undef PAT static char *cattr_name(unsigned long flags) { switch (flags & _PAGE_CACHE_MASK) { case _PAGE_CACHE_UC: return "uncached"; case _PAGE_CACHE_UC_MINUS: return "uncached-minus"; case _PAGE_CACHE_WB: return "write-back"; case _PAGE_CACHE_WC: return "write-combining"; default: return "broken"; } } /* * The global memtype list keeps track of memory type for specific * physical memory areas. Conflicting memory types in different * mappings can cause CPU cache corruption. To avoid this we keep track. * * The list is sorted based on starting address and can contain multiple * entries for each address (this allows reference counting for overlapping * areas). All the aliases have the same cache attributes of course. * Zero attributes are represented as holes. * * Currently the data structure is a list because the number of mappings * are expected to be relatively small. If this should be a problem * it could be changed to a rbtree or similar. * * memtype_lock protects the whole list. */ struct memtype { u64 start; u64 end; unsigned long type; struct list_head nd; }; static LIST_HEAD(memtype_list); static DEFINE_SPINLOCK(memtype_lock); /* protects memtype list */ /* * Does intersection of PAT memory type and MTRR memory type and returns * the resulting memory type as PAT understands it. * (Type in pat and mtrr will not have same value) * The intersection is based on "Effective Memory Type" tables in IA-32 * SDM vol 3a */ static unsigned long pat_x_mtrr_type(u64 start, u64 end, unsigned long req_type) { /* * Look for MTRR hint to get the effective type in case where PAT * request is for WB. */ if (req_type == _PAGE_CACHE_WB) { u8 mtrr_type; mtrr_type = mtrr_type_lookup(start, end); if (mtrr_type != MTRR_TYPE_WRBACK) return _PAGE_CACHE_UC_MINUS; return _PAGE_CACHE_WB; } return req_type; } static int chk_conflict(struct memtype *new, struct memtype *entry, unsigned long *type) { if (new->type != entry->type) { if (type) { new->type = entry->type; *type = entry->type; } else goto conflict; } /* check overlaps with more than one entry in the list */ list_for_each_entry_continue(entry, &memtype_list, nd) { if (new->end <= entry->start) break; else if (new->type != entry->type) goto conflict; } return 0; conflict: printk(KERN_INFO "%s:%d conflicting memory types " "%Lx-%Lx %s<->%s\n", current->comm, current->pid, new->start, new->end, cattr_name(new->type), cattr_name(entry->type)); return -EBUSY; } static struct memtype *cached_entry; static u64 cached_start; static int pat_pagerange_is_ram(unsigned long start, unsigned long end) { int ram_page = 0, not_rampage = 0; unsigned long page_nr; for (page_nr = (start >> PAGE_SHIFT); page_nr < (end >> PAGE_SHIFT); ++page_nr) { /* * For legacy reasons, physical address range in the legacy ISA * region is tracked as non-RAM. This will allow users of * /dev/mem to map portions of legacy ISA region, even when * some of those portions are listed(or not even listed) with * different e820 types(RAM/reserved/..) */ if (page_nr >= (ISA_END_ADDRESS >> PAGE_SHIFT) && page_is_ram(page_nr)) ram_page = 1; else not_rampage = 1; if (ram_page == not_rampage) return -1; } return ram_page; } /* * For RAM pages, mark the pages as non WB memory type using * PageNonWB (PG_arch_1). We allow only one set_memory_uc() or * set_memory_wc() on a RAM page at a time before marking it as WB again. * This is ok, because only one driver will be owning the page and * doing set_memory_*() calls. * * For now, we use PageNonWB to track that the RAM page is being mapped * as non WB. In future, we will have to use one more flag * (or some other mechanism in page_struct) to distinguish between * UC and WC mapping. */ static int reserve_ram_pages_type(u64 start, u64 end, unsigned long req_type, unsigned long *new_type) { struct page *page; u64 pfn, end_pfn; for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) { page = pfn_to_page(pfn); if (page_mapped(page) || PageNonWB(page)) goto out; SetPageNonWB(page); } return 0; out: end_pfn = pfn; for (pfn = (start >> PAGE_SHIFT); pfn < end_pfn; ++pfn) { page = pfn_to_page(pfn); ClearPageNonWB(page); } return -EINVAL; } static int free_ram_pages_type(u64 start, u64 end) { struct page *page; u64 pfn, end_pfn; for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) { page = pfn_to_page(pfn); if (page_mapped(page) || !PageNonWB(page)) goto out; ClearPageNonWB(page); } return 0; out: end_pfn = pfn; for (pfn = (start >> PAGE_SHIFT); pfn < end_pfn; ++pfn) { page = pfn_to_page(pfn); SetPageNonWB(page); } return -EINVAL; } /* * req_type typically has one of the: * - _PAGE_CACHE_WB * - _PAGE_CACHE_WC * - _PAGE_CACHE_UC_MINUS * - _PAGE_CACHE_UC * * req_type will have a special case value '-1', when requester want to inherit * the memory type from mtrr (if WB), existing PAT, defaulting to UC_MINUS. * * If new_type is NULL, function will return an error if it cannot reserve the * region with req_type. If new_type is non-NULL, function will return * available type in new_type in case of no error. In case of any error * it will return a negative return value. */ int reserve_memtype(u64 start, u64 end, unsigned long req_type, unsigned long *new_type) { struct memtype *new, *entry; unsigned long actual_type; struct list_head *where; int is_range_ram; int err = 0; BUG_ON(start >= end); /* end is exclusive */ if (!pat_enabled) { /* This is identical to page table setting without PAT */ if (new_type) { if (req_type == -1) *new_type = _PAGE_CACHE_WB; else *new_type = req_type & _PAGE_CACHE_MASK; } return 0; } /* Low ISA region is always mapped WB in page table. No need to track */ if (is_ISA_range(start, end - 1)) { if (new_type) *new_type = _PAGE_CACHE_WB; return 0; } /* * Call mtrr_lookup to get the type hint. This is an * optimization for /dev/mem mmap'ers into WB memory (BIOS * tools and ACPI tools). Use WB request for WB memory and use * UC_MINUS otherwise. */ actual_type = pat_x_mtrr_type(start, end, req_type & _PAGE_CACHE_MASK); if (new_type) *new_type = actual_type; is_range_ram = pat_pagerange_is_ram(start, end); if (is_range_ram == 1) return reserve_ram_pages_type(start, end, req_type, new_type); else if (is_range_ram < 0) return -EINVAL; new = kmalloc(sizeof(struct memtype), GFP_KERNEL); if (!new) return -ENOMEM; new->start = start; new->end = end; new->type = actual_type; spin_lock(&memtype_lock); if (cached_entry && start >= cached_start) entry = cached_entry; else entry = list_entry(&memtype_list, struct memtype, nd); /* Search for existing mapping that overlaps the current range */ where = NULL; list_for_each_entry_continue(entry, &memtype_list, nd) { if (end <= entry->start) { where = entry->nd.prev; cached_entry = list_entry(where, struct memtype, nd); break; } else if (start <= entry->start) { /* end > entry->start */ err = chk_conflict(new, entry, new_type); if (!err) { dprintk("Overlap at 0x%Lx-0x%Lx\n", entry->start, entry->end); where = entry->nd.prev; cached_entry = list_entry(where, struct memtype, nd); } break; } else if (start < entry->end) { /* start > entry->start */ err = chk_conflict(new, entry, new_type); if (!err) { dprintk("Overlap at 0x%Lx-0x%Lx\n", entry->start, entry->end); cached_entry = list_entry(entry->nd.prev, struct memtype, nd); /* * Move to right position in the linked * list to add this new entry */ list_for_each_entry_continue(entry, &memtype_list, nd) { if (start <= entry->start) { where = entry->nd.prev; break; } } } break; } } if (err) { printk(KERN_INFO "reserve_memtype failed 0x%Lx-0x%Lx, " "track %s, req %s\n", start, end, cattr_name(new->type), cattr_name(req_type)); kfree(new); spin_unlock(&memtype_lock); return err; } cached_start = start; if (where) list_add(&new->nd, where); else list_add_tail(&new->nd, &memtype_list); spin_unlock(&memtype_lock); dprintk("reserve_memtype added 0x%Lx-0x%Lx, track %s, req %s, ret %s\n", start, end, cattr_name(new->type), cattr_name(req_type), new_type ? cattr_name(*new_type) : "-"); return err; } int free_memtype(u64 start, u64 end) { struct memtype *entry; int err = -EINVAL; int is_range_ram; if (!pat_enabled) return 0; /* Low ISA region is always mapped WB. No need to track */ if (is_ISA_range(start, end - 1)) return 0; is_range_ram = pat_pagerange_is_ram(start, end); if (is_range_ram == 1) return free_ram_pages_type(start, end); else if (is_range_ram < 0) return -EINVAL; spin_lock(&memtype_lock); list_for_each_entry(entry, &memtype_list, nd) { if (entry->start == start && entry->end == end) { if (cached_entry == entry || cached_start == start) cached_entry = NULL; list_del(&entry->nd); kfree(entry); err = 0; break; } } spin_unlock(&memtype_lock); if (err) { printk(KERN_INFO "%s:%d freeing invalid memtype %Lx-%Lx\n", current->comm, current->pid, start, end); } dprintk("free_memtype request 0x%Lx-0x%Lx\n", start, end); return err; } pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size, pgprot_t vma_prot) { return vma_prot; } #ifdef CONFIG_STRICT_DEVMEM /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM*/ static inline int range_is_allowed(unsigned long pfn, unsigned long size) { return 1; } #else /* This check is needed to avoid cache aliasing when PAT is enabled */ static inline int range_is_allowed(unsigned long pfn, unsigned long size) { u64 from = ((u64)pfn) << PAGE_SHIFT; u64 to = from + size; u64 cursor = from; if (!pat_enabled) return 1; while (cursor < to) { if (!devmem_is_allowed(pfn)) { printk(KERN_INFO "Program %s tried to access /dev/mem between %Lx->%Lx.\n", current->comm, from, to); return 0; } cursor += PAGE_SIZE; pfn++; } return 1; } #endif /* CONFIG_STRICT_DEVMEM */ int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, unsigned long size, pgprot_t *vma_prot) { unsigned long flags = _PAGE_CACHE_WB; if (!range_is_allowed(pfn, size)) return 0; if (file->f_flags & O_SYNC) { flags = _PAGE_CACHE_UC_MINUS; } #ifdef CONFIG_X86_32 /* * On the PPro and successors, the MTRRs are used to set * memory types for physical addresses outside main memory, * so blindly setting UC or PWT on those pages is wrong. * For Pentiums and earlier, the surround logic should disable * caching for the high addresses through the KEN pin, but * we maintain the tradition of paranoia in this code. */ if (!pat_enabled && !(boot_cpu_has(X86_FEATURE_MTRR) || boot_cpu_has(X86_FEATURE_K6_MTRR) || boot_cpu_has(X86_FEATURE_CYRIX_ARR) || boot_cpu_has(X86_FEATURE_CENTAUR_MCR)) && (pfn << PAGE_SHIFT) >= __pa(high_memory)) { flags = _PAGE_CACHE_UC; } #endif *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) | flags); return 1; } /* * Change the memory type for the physial address range in kernel identity * mapping space if that range is a part of identity map. */ int kernel_map_sync_memtype(u64 base, unsigned long size, unsigned long flags) { unsigned long id_sz; if (!pat_enabled || base >= __pa(high_memory)) return 0; id_sz = (__pa(high_memory) < base + size) ? __pa(high_memory) - base : size; if (ioremap_change_attr((unsigned long)__va(base), id_sz, flags) < 0) { printk(KERN_INFO "%s:%d ioremap_change_attr failed %s " "for %Lx-%Lx\n", current->comm, current->pid, cattr_name(flags), base, (unsigned long long)(base + size)); return -EINVAL; } return 0; } /* * Internal interface to reserve a range of physical memory with prot. * Reserved non RAM regions only and after successful reserve_memtype, * this func also keeps identity mapping (if any) in sync with this new prot. */ static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot, int strict_prot) { int is_ram = 0; int ret; unsigned long want_flags = (pgprot_val(*vma_prot) & _PAGE_CACHE_MASK); unsigned long flags = want_flags; is_ram = pat_pagerange_is_ram(paddr, paddr + size); /* * reserve_pfn_range() doesn't support RAM pages. Maintain the current * behavior with RAM pages by returning success. */ if (is_ram != 0) return 0; ret = reserve_memtype(paddr, paddr + size, want_flags, &flags); if (ret) return ret; if (flags != want_flags) { if (strict_prot || !is_new_memtype_allowed(paddr, size, want_flags, flags)) { free_memtype(paddr, paddr + size); printk(KERN_ERR "%s:%d map pfn expected mapping type %s" " for %Lx-%Lx, got %s\n", current->comm, current->pid, cattr_name(want_flags), (unsigned long long)paddr, (unsigned long long)(paddr + size), cattr_name(flags)); return -EINVAL; } /* * We allow returning different type than the one requested in * non strict case. */ *vma_prot = __pgprot((pgprot_val(*vma_prot) & (~_PAGE_CACHE_MASK)) | flags); } if (kernel_map_sync_memtype(paddr, size, flags) < 0) { free_memtype(paddr, paddr + size); return -EINVAL; } return 0; } /* * Internal interface to free a range of physical memory. * Frees non RAM regions only. */ static void free_pfn_range(u64 paddr, unsigned long size) { int is_ram; is_ram = pat_pagerange_is_ram(paddr, paddr + size); if (is_ram == 0) free_memtype(paddr, paddr + size); } /* * track_pfn_vma_copy is called when vma that is covering the pfnmap gets * copied through copy_page_range(). * * If the vma has a linear pfn mapping for the entire range, we get the prot * from pte and reserve the entire vma range with single reserve_pfn_range call. */ int track_pfn_vma_copy(struct vm_area_struct *vma) { resource_size_t paddr; unsigned long prot; unsigned long vma_size = vma->vm_end - vma->vm_start; pgprot_t pgprot; if (!pat_enabled) return 0; /* * For now, only handle remap_pfn_range() vmas where * is_linear_pfn_mapping() == TRUE. Handling of * vm_insert_pfn() is TBD. */ if (is_linear_pfn_mapping(vma)) { /* * reserve the whole chunk covered by vma. We need the * starting address and protection from pte. */ if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) { WARN_ON_ONCE(1); return -EINVAL; } pgprot = __pgprot(prot); return reserve_pfn_range(paddr, vma_size, &pgprot, 1); } return 0; } /* * track_pfn_vma_new is called when a _new_ pfn mapping is being established * for physical range indicated by pfn and size. * * prot is passed in as a parameter for the new mapping. If the vma has a * linear pfn mapping for the entire range reserve the entire vma range with * single reserve_pfn_range call. */ int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot, unsigned long pfn, unsigned long size) { resource_size_t paddr; unsigned long vma_size = vma->vm_end - vma->vm_start; if (!pat_enabled) return 0; /* * For now, only handle remap_pfn_range() vmas where * is_linear_pfn_mapping() == TRUE. Handling of * vm_insert_pfn() is TBD. */ if (is_linear_pfn_mapping(vma)) { /* reserve the whole chunk starting from vm_pgoff */ paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT; return reserve_pfn_range(paddr, vma_size, prot, 0); } return 0; } /* * untrack_pfn_vma is called while unmapping a pfnmap for a region. * untrack can be called for a specific region indicated by pfn and size or * can be for the entire vma (in which case size can be zero). */ void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn, unsigned long size) { resource_size_t paddr; unsigned long vma_size = vma->vm_end - vma->vm_start; if (!pat_enabled) return; /* * For now, only handle remap_pfn_range() vmas where * is_linear_pfn_mapping() == TRUE. Handling of * vm_insert_pfn() is TBD. */ if (is_linear_pfn_mapping(vma)) { /* free the whole chunk starting from vm_pgoff */ paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT; free_pfn_range(paddr, vma_size); return; } } pgprot_t pgprot_writecombine(pgprot_t prot) { if (pat_enabled) return __pgprot(pgprot_val(prot) | _PAGE_CACHE_WC); else return pgprot_noncached(prot); } EXPORT_SYMBOL_GPL(pgprot_writecombine); #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT) /* get Nth element of the linked list */ static struct memtype *memtype_get_idx(loff_t pos) { struct memtype *list_node, *print_entry; int i = 1; print_entry = kmalloc(sizeof(struct memtype), GFP_KERNEL); if (!print_entry) return NULL; spin_lock(&memtype_lock); list_for_each_entry(list_node, &memtype_list, nd) { if (pos == i) { *print_entry = *list_node; spin_unlock(&memtype_lock); return print_entry; } ++i; } spin_unlock(&memtype_lock); kfree(print_entry); return NULL; } static void *memtype_seq_start(struct seq_file *seq, loff_t *pos) { if (*pos == 0) { ++*pos; seq_printf(seq, "PAT memtype list:\n"); } return memtype_get_idx(*pos); } static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos) { ++*pos; return memtype_get_idx(*pos); } static void memtype_seq_stop(struct seq_file *seq, void *v) { } static int memtype_seq_show(struct seq_file *seq, void *v) { struct memtype *print_entry = (struct memtype *)v; seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type), print_entry->start, print_entry->end); kfree(print_entry); return 0; } static const struct seq_operations memtype_seq_ops = { .start = memtype_seq_start, .next = memtype_seq_next, .stop = memtype_seq_stop, .show = memtype_seq_show, }; static int memtype_seq_open(struct inode *inode, struct file *file) { return seq_open(file, &memtype_seq_ops); } static const struct file_operations memtype_fops = { .open = memtype_seq_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; static int __init pat_memtype_list_init(void) { debugfs_create_file("pat_memtype_list", S_IRUSR, arch_debugfs_dir, NULL, &memtype_fops); return 0; } late_initcall(pat_memtype_list_init); #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */