/* * Some of the code in this file has been gleaned from the 64 bit * discontigmem support code base. * * Copyright (C) 2002, IBM Corp. * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Send feedback to Pat Gaughen */ #include #include #include #include #include #include #include #include #include /* * proximity macros and definitions */ #define NODE_ARRAY_INDEX(x) ((x) / 8) /* 8 bits/char */ #define NODE_ARRAY_OFFSET(x) ((x) % 8) /* 8 bits/char */ #define BMAP_SET(bmap, bit) ((bmap)[NODE_ARRAY_INDEX(bit)] |= 1 << NODE_ARRAY_OFFSET(bit)) #define BMAP_TEST(bmap, bit) ((bmap)[NODE_ARRAY_INDEX(bit)] & (1 << NODE_ARRAY_OFFSET(bit))) /* bitmap length; _PXM is at most 255 */ #define PXM_BITMAP_LEN (MAX_PXM_DOMAINS / 8) static u8 __initdata pxm_bitmap[PXM_BITMAP_LEN]; /* bitmap of proximity domains */ #define MAX_CHUNKS_PER_NODE 3 #define MAXCHUNKS (MAX_CHUNKS_PER_NODE * MAX_NUMNODES) struct node_memory_chunk_s { unsigned long start_pfn; unsigned long end_pfn; u8 pxm; // proximity domain of node u8 nid; // which cnode contains this chunk? u8 bank; // which mem bank on this node }; static struct node_memory_chunk_s __initdata node_memory_chunk[MAXCHUNKS]; static int __initdata num_memory_chunks; /* total number of memory chunks */ static u8 __initdata apicid_to_pxm[MAX_APICID]; int numa_off __initdata; int acpi_numa __initdata; static __init void bad_srat(void) { printk(KERN_ERR "SRAT: SRAT not used.\n"); acpi_numa = -1; num_memory_chunks = 0; } static __init inline int srat_disabled(void) { return numa_off || acpi_numa < 0; } /* Identify CPU proximity domains */ void __init acpi_numa_processor_affinity_init(struct acpi_srat_cpu_affinity *cpu_affinity) { if (srat_disabled()) return; if (cpu_affinity->header.length != sizeof(struct acpi_srat_cpu_affinity)) { bad_srat(); return; } if ((cpu_affinity->flags & ACPI_SRAT_CPU_ENABLED) == 0) return; /* empty entry */ /* mark this node as "seen" in node bitmap */ BMAP_SET(pxm_bitmap, cpu_affinity->proximity_domain_lo); apicid_to_pxm[cpu_affinity->apic_id] = cpu_affinity->proximity_domain_lo; printk(KERN_DEBUG "CPU %02x in proximity domain %02x\n", cpu_affinity->apic_id, cpu_affinity->proximity_domain_lo); } /* * Identify memory proximity domains and hot-remove capabilities. * Fill node memory chunk list structure. */ void __init acpi_numa_memory_affinity_init(struct acpi_srat_mem_affinity *memory_affinity) { unsigned long long paddr, size; unsigned long start_pfn, end_pfn; u8 pxm; struct node_memory_chunk_s *p, *q, *pend; if (srat_disabled()) return; if (memory_affinity->header.length != sizeof(struct acpi_srat_mem_affinity)) { bad_srat(); return; } if ((memory_affinity->flags & ACPI_SRAT_MEM_ENABLED) == 0) return; /* empty entry */ pxm = memory_affinity->proximity_domain & 0xff; /* mark this node as "seen" in node bitmap */ BMAP_SET(pxm_bitmap, pxm); /* calculate info for memory chunk structure */ paddr = memory_affinity->base_address; size = memory_affinity->length; start_pfn = paddr >> PAGE_SHIFT; end_pfn = (paddr + size) >> PAGE_SHIFT; if (num_memory_chunks >= MAXCHUNKS) { printk(KERN_WARNING "Too many mem chunks in SRAT." " Ignoring %lld MBytes at %llx\n", size/(1024*1024), paddr); return; } /* Insertion sort based on base address */ pend = &node_memory_chunk[num_memory_chunks]; for (p = &node_memory_chunk[0]; p < pend; p++) { if (start_pfn < p->start_pfn) break; } if (p < pend) { for (q = pend; q >= p; q--) *(q + 1) = *q; } p->start_pfn = start_pfn; p->end_pfn = end_pfn; p->pxm = pxm; num_memory_chunks++; printk(KERN_DEBUG "Memory range %08lx to %08lx" " in proximity domain %02x %s\n", start_pfn, end_pfn, pxm, ((memory_affinity->flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) ? "enabled and removable" : "enabled" ) ); } /* Callback for SLIT parsing */ void __init acpi_numa_slit_init(struct acpi_table_slit *slit) { } void acpi_numa_arch_fixup(void) { } /* * The SRAT table always lists ascending addresses, so can always * assume that the first "start" address that you see is the real * start of the node, and that the current "end" address is after * the previous one. */ static __init int node_read_chunk(int nid, struct node_memory_chunk_s *memory_chunk) { /* * Only add present memory as told by the e820. * There is no guarantee from the SRAT that the memory it * enumerates is present at boot time because it represents * *possible* memory hotplug areas the same as normal RAM. */ if (memory_chunk->start_pfn >= max_pfn) { printk(KERN_INFO "Ignoring SRAT pfns: %08lx - %08lx\n", memory_chunk->start_pfn, memory_chunk->end_pfn); return -1; } if (memory_chunk->nid != nid) return -1; if (!node_has_online_mem(nid)) node_start_pfn[nid] = memory_chunk->start_pfn; if (node_start_pfn[nid] > memory_chunk->start_pfn) node_start_pfn[nid] = memory_chunk->start_pfn; if (node_end_pfn[nid] < memory_chunk->end_pfn) node_end_pfn[nid] = memory_chunk->end_pfn; return 0; } int __init get_memcfg_from_srat(void) { int i, j, nid; if (srat_disabled()) goto out_fail; if (num_memory_chunks == 0) { printk(KERN_WARNING "could not finy any ACPI SRAT memory areas.\n"); goto out_fail; } /* Calculate total number of nodes in system from PXM bitmap and create * a set of sequential node IDs starting at zero. (ACPI doesn't seem * to specify the range of _PXM values.) */ /* * MCD - we no longer HAVE to number nodes sequentially. PXM domain * numbers could go as high as 256, and MAX_NUMNODES for i386 is typically * 32, so we will continue numbering them in this manner until MAX_NUMNODES * approaches MAX_PXM_DOMAINS for i386. */ nodes_clear(node_online_map); for (i = 0; i < MAX_PXM_DOMAINS; i++) { if (BMAP_TEST(pxm_bitmap, i)) { int nid = acpi_map_pxm_to_node(i); node_set_online(nid); } } BUG_ON(num_online_nodes() == 0); /* set cnode id in memory chunk structure */ for (i = 0; i < num_memory_chunks; i++) node_memory_chunk[i].nid = pxm_to_node(node_memory_chunk[i].pxm); printk(KERN_DEBUG "pxm bitmap: "); for (i = 0; i < sizeof(pxm_bitmap); i++) { printk(KERN_CONT "%02x ", pxm_bitmap[i]); } printk(KERN_CONT "\n"); printk(KERN_DEBUG "Number of logical nodes in system = %d\n", num_online_nodes()); printk(KERN_DEBUG "Number of memory chunks in system = %d\n", num_memory_chunks); for (i = 0; i < MAX_APICID; i++) apicid_2_node[i] = pxm_to_node(apicid_to_pxm[i]); for (j = 0; j < num_memory_chunks; j++){ struct node_memory_chunk_s * chunk = &node_memory_chunk[j]; printk(KERN_DEBUG "chunk %d nid %d start_pfn %08lx end_pfn %08lx\n", j, chunk->nid, chunk->start_pfn, chunk->end_pfn); if (node_read_chunk(chunk->nid, chunk)) continue; e820_register_active_regions(chunk->nid, chunk->start_pfn, min(chunk->end_pfn, max_pfn)); } for_each_online_node(nid) { unsigned long start = node_start_pfn[nid]; unsigned long end = min(node_end_pfn[nid], max_pfn); memory_present(nid, start, end); node_remap_size[nid] = node_memmap_size_bytes(nid, start, end); } return 1; out_fail: printk(KERN_ERR "failed to get NUMA memory information from SRAT" " table\n"); return 0; }