/* * intel_mid_sfi.c: Intel MID SFI initialization code * * (C) Copyright 2013 Intel Corporation * Author: Sathyanarayanan Kuppuswamy * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; version 2 * of the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SFI_SIG_OEM0 "OEM0" #define MAX_IPCDEVS 24 #define MAX_SCU_SPI 24 #define MAX_SCU_I2C 24 static struct platform_device *ipc_devs[MAX_IPCDEVS]; static struct spi_board_info *spi_devs[MAX_SCU_SPI]; static struct i2c_board_info *i2c_devs[MAX_SCU_I2C]; static struct sfi_gpio_table_entry *gpio_table; static struct sfi_timer_table_entry sfi_mtimer_array[SFI_MTMR_MAX_NUM]; static int ipc_next_dev; static int spi_next_dev; static int i2c_next_dev; static int i2c_bus[MAX_SCU_I2C]; static int gpio_num_entry; static u32 sfi_mtimer_usage[SFI_MTMR_MAX_NUM]; int sfi_mrtc_num; int sfi_mtimer_num; struct sfi_rtc_table_entry sfi_mrtc_array[SFI_MRTC_MAX]; EXPORT_SYMBOL_GPL(sfi_mrtc_array); struct blocking_notifier_head intel_scu_notifier = BLOCKING_NOTIFIER_INIT(intel_scu_notifier); EXPORT_SYMBOL_GPL(intel_scu_notifier); #define intel_mid_sfi_get_pdata(dev, priv) \ ((dev)->get_platform_data ? (dev)->get_platform_data(priv) : NULL) /* parse all the mtimer info to a static mtimer array */ int __init sfi_parse_mtmr(struct sfi_table_header *table) { struct sfi_table_simple *sb; struct sfi_timer_table_entry *pentry; struct mpc_intsrc mp_irq; int totallen; sb = (struct sfi_table_simple *)table; if (!sfi_mtimer_num) { sfi_mtimer_num = SFI_GET_NUM_ENTRIES(sb, struct sfi_timer_table_entry); pentry = (struct sfi_timer_table_entry *) sb->pentry; totallen = sfi_mtimer_num * sizeof(*pentry); memcpy(sfi_mtimer_array, pentry, totallen); } pr_debug("SFI MTIMER info (num = %d):\n", sfi_mtimer_num); pentry = sfi_mtimer_array; for (totallen = 0; totallen < sfi_mtimer_num; totallen++, pentry++) { pr_debug("timer[%d]: paddr = 0x%08x, freq = %dHz, irq = %d\n", totallen, (u32)pentry->phys_addr, pentry->freq_hz, pentry->irq); mp_irq.type = MP_INTSRC; mp_irq.irqtype = mp_INT; /* triggering mode edge bit 2-3, active high polarity bit 0-1 */ mp_irq.irqflag = 5; mp_irq.srcbus = MP_BUS_ISA; mp_irq.srcbusirq = pentry->irq; /* IRQ */ mp_irq.dstapic = MP_APIC_ALL; mp_irq.dstirq = pentry->irq; mp_save_irq(&mp_irq); mp_map_gsi_to_irq(pentry->irq, IOAPIC_MAP_ALLOC, NULL); } return 0; } struct sfi_timer_table_entry *sfi_get_mtmr(int hint) { int i; if (hint < sfi_mtimer_num) { if (!sfi_mtimer_usage[hint]) { pr_debug("hint taken for timer %d irq %d\n", hint, sfi_mtimer_array[hint].irq); sfi_mtimer_usage[hint] = 1; return &sfi_mtimer_array[hint]; } } /* take the first timer available */ for (i = 0; i < sfi_mtimer_num;) { if (!sfi_mtimer_usage[i]) { sfi_mtimer_usage[i] = 1; return &sfi_mtimer_array[i]; } i++; } return NULL; } void sfi_free_mtmr(struct sfi_timer_table_entry *mtmr) { int i; for (i = 0; i < sfi_mtimer_num;) { if (mtmr->irq == sfi_mtimer_array[i].irq) { sfi_mtimer_usage[i] = 0; return; } i++; } } /* parse all the mrtc info to a global mrtc array */ int __init sfi_parse_mrtc(struct sfi_table_header *table) { struct sfi_table_simple *sb; struct sfi_rtc_table_entry *pentry; struct mpc_intsrc mp_irq; int totallen; sb = (struct sfi_table_simple *)table; if (!sfi_mrtc_num) { sfi_mrtc_num = SFI_GET_NUM_ENTRIES(sb, struct sfi_rtc_table_entry); pentry = (struct sfi_rtc_table_entry *)sb->pentry; totallen = sfi_mrtc_num * sizeof(*pentry); memcpy(sfi_mrtc_array, pentry, totallen); } pr_debug("SFI RTC info (num = %d):\n", sfi_mrtc_num); pentry = sfi_mrtc_array; for (totallen = 0; totallen < sfi_mrtc_num; totallen++, pentry++) { pr_debug("RTC[%d]: paddr = 0x%08x, irq = %d\n", totallen, (u32)pentry->phys_addr, pentry->irq); mp_irq.type = MP_INTSRC; mp_irq.irqtype = mp_INT; mp_irq.irqflag = 0xf; /* level trigger and active low */ mp_irq.srcbus = MP_BUS_ISA; mp_irq.srcbusirq = pentry->irq; /* IRQ */ mp_irq.dstapic = MP_APIC_ALL; mp_irq.dstirq = pentry->irq; mp_save_irq(&mp_irq); mp_map_gsi_to_irq(pentry->irq, IOAPIC_MAP_ALLOC, NULL); } return 0; } /* * Parsing GPIO table first, since the DEVS table will need this table * to map the pin name to the actual pin. */ static int __init sfi_parse_gpio(struct sfi_table_header *table) { struct sfi_table_simple *sb; struct sfi_gpio_table_entry *pentry; int num, i; if (gpio_table) return 0; sb = (struct sfi_table_simple *)table; num = SFI_GET_NUM_ENTRIES(sb, struct sfi_gpio_table_entry); pentry = (struct sfi_gpio_table_entry *)sb->pentry; gpio_table = kmalloc(num * sizeof(*pentry), GFP_KERNEL); if (!gpio_table) return -1; memcpy(gpio_table, pentry, num * sizeof(*pentry)); gpio_num_entry = num; pr_debug("GPIO pin info:\n"); for (i = 0; i < num; i++, pentry++) pr_debug("info[%2d]: controller = %16.16s, pin_name = %16.16s," " pin = %d\n", i, pentry->controller_name, pentry->pin_name, pentry->pin_no); return 0; } int get_gpio_by_name(const char *name) { struct sfi_gpio_table_entry *pentry = gpio_table; int i; if (!pentry) return -1; for (i = 0; i < gpio_num_entry; i++, pentry++) { if (!strncmp(name, pentry->pin_name, SFI_NAME_LEN)) return pentry->pin_no; } return -EINVAL; } void __init intel_scu_device_register(struct platform_device *pdev) { if (ipc_next_dev == MAX_IPCDEVS) pr_err("too many SCU IPC devices"); else ipc_devs[ipc_next_dev++] = pdev; } static void __init intel_scu_spi_device_register(struct spi_board_info *sdev) { struct spi_board_info *new_dev; if (spi_next_dev == MAX_SCU_SPI) { pr_err("too many SCU SPI devices"); return; } new_dev = kzalloc(sizeof(*sdev), GFP_KERNEL); if (!new_dev) { pr_err("failed to alloc mem for delayed spi dev %s\n", sdev->modalias); return; } *new_dev = *sdev; spi_devs[spi_next_dev++] = new_dev; } static void __init intel_scu_i2c_device_register(int bus, struct i2c_board_info *idev) { struct i2c_board_info *new_dev; if (i2c_next_dev == MAX_SCU_I2C) { pr_err("too many SCU I2C devices"); return; } new_dev = kzalloc(sizeof(*idev), GFP_KERNEL); if (!new_dev) { pr_err("failed to alloc mem for delayed i2c dev %s\n", idev->type); return; } *new_dev = *idev; i2c_bus[i2c_next_dev] = bus; i2c_devs[i2c_next_dev++] = new_dev; } /* Called by IPC driver */ void intel_scu_devices_create(void) { int i; for (i = 0; i < ipc_next_dev; i++) platform_device_add(ipc_devs[i]); for (i = 0; i < spi_next_dev; i++) spi_register_board_info(spi_devs[i], 1); for (i = 0; i < i2c_next_dev; i++) { struct i2c_adapter *adapter; struct i2c_client *client; adapter = i2c_get_adapter(i2c_bus[i]); if (adapter) { client = i2c_new_device(adapter, i2c_devs[i]); if (!client) pr_err("can't create i2c device %s\n", i2c_devs[i]->type); } else i2c_register_board_info(i2c_bus[i], i2c_devs[i], 1); } intel_scu_notifier_post(SCU_AVAILABLE, NULL); } EXPORT_SYMBOL_GPL(intel_scu_devices_create); /* Called by IPC driver */ void intel_scu_devices_destroy(void) { int i; intel_scu_notifier_post(SCU_DOWN, NULL); for (i = 0; i < ipc_next_dev; i++) platform_device_del(ipc_devs[i]); } EXPORT_SYMBOL_GPL(intel_scu_devices_destroy); static void __init install_irq_resource(struct platform_device *pdev, int irq) { /* Single threaded */ static struct resource res __initdata = { .name = "IRQ", .flags = IORESOURCE_IRQ, }; res.start = irq; platform_device_add_resources(pdev, &res, 1); } static void __init sfi_handle_ipc_dev(struct sfi_device_table_entry *pentry, struct devs_id *dev) { struct platform_device *pdev; void *pdata = NULL; pr_debug("IPC bus, name = %16.16s, irq = 0x%2x\n", pentry->name, pentry->irq); pdata = intel_mid_sfi_get_pdata(dev, pentry); if (IS_ERR(pdata)) return; pdev = platform_device_alloc(pentry->name, 0); if (pdev == NULL) { pr_err("out of memory for SFI platform device '%s'.\n", pentry->name); return; } install_irq_resource(pdev, pentry->irq); pdev->dev.platform_data = pdata; platform_device_add(pdev); } static void __init sfi_handle_spi_dev(struct sfi_device_table_entry *pentry, struct devs_id *dev) { struct spi_board_info spi_info; void *pdata = NULL; memset(&spi_info, 0, sizeof(spi_info)); strncpy(spi_info.modalias, pentry->name, SFI_NAME_LEN); spi_info.irq = ((pentry->irq == (u8)0xff) ? 0 : pentry->irq); spi_info.bus_num = pentry->host_num; spi_info.chip_select = pentry->addr; spi_info.max_speed_hz = pentry->max_freq; pr_debug("SPI bus=%d, name=%16.16s, irq=0x%2x, max_freq=%d, cs=%d\n", spi_info.bus_num, spi_info.modalias, spi_info.irq, spi_info.max_speed_hz, spi_info.chip_select); pdata = intel_mid_sfi_get_pdata(dev, &spi_info); if (IS_ERR(pdata)) return; spi_info.platform_data = pdata; if (dev->delay) intel_scu_spi_device_register(&spi_info); else spi_register_board_info(&spi_info, 1); } static void __init sfi_handle_i2c_dev(struct sfi_device_table_entry *pentry, struct devs_id *dev) { struct i2c_board_info i2c_info; void *pdata = NULL; memset(&i2c_info, 0, sizeof(i2c_info)); strncpy(i2c_info.type, pentry->name, SFI_NAME_LEN); i2c_info.irq = ((pentry->irq == (u8)0xff) ? 0 : pentry->irq); i2c_info.addr = pentry->addr; pr_debug("I2C bus = %d, name = %16.16s, irq = 0x%2x, addr = 0x%x\n", pentry->host_num, i2c_info.type, i2c_info.irq, i2c_info.addr); pdata = intel_mid_sfi_get_pdata(dev, &i2c_info); i2c_info.platform_data = pdata; if (IS_ERR(pdata)) return; if (dev->delay) intel_scu_i2c_device_register(pentry->host_num, &i2c_info); else i2c_register_board_info(pentry->host_num, &i2c_info, 1); } extern struct devs_id *const __x86_intel_mid_dev_start[], *const __x86_intel_mid_dev_end[]; static struct devs_id __init *get_device_id(u8 type, char *name) { struct devs_id *const *dev_table; for (dev_table = __x86_intel_mid_dev_start; dev_table < __x86_intel_mid_dev_end; dev_table++) { struct devs_id *dev = *dev_table; if (dev->type == type && !strncmp(dev->name, name, SFI_NAME_LEN)) { return dev; } } return NULL; } static int __init sfi_parse_devs(struct sfi_table_header *table) { struct sfi_table_simple *sb; struct sfi_device_table_entry *pentry; struct devs_id *dev = NULL; int num, i, ret; int polarity; struct irq_alloc_info info; sb = (struct sfi_table_simple *)table; num = SFI_GET_NUM_ENTRIES(sb, struct sfi_device_table_entry); pentry = (struct sfi_device_table_entry *)sb->pentry; for (i = 0; i < num; i++, pentry++) { int irq = pentry->irq; if (irq != (u8)0xff) { /* native RTE case */ /* these SPI2 devices are not exposed to system as PCI * devices, but they have separate RTE entry in IOAPIC * so we have to enable them one by one here */ if (intel_mid_identify_cpu() == INTEL_MID_CPU_CHIP_TANGIER) { if (!strncmp(pentry->name, "r69001-ts-i2c", 13)) /* active low */ polarity = 1; else if (!strncmp(pentry->name, "synaptics_3202", 14)) /* active low */ polarity = 1; else if (irq == 41) /* fast_int_1 */ polarity = 1; else /* active high */ polarity = 0; } else { /* PNW and CLV go with active low */ polarity = 1; } ioapic_set_alloc_attr(&info, NUMA_NO_NODE, 1, polarity); ret = mp_map_gsi_to_irq(irq, IOAPIC_MAP_ALLOC, &info); WARN_ON(ret < 0); } dev = get_device_id(pentry->type, pentry->name); if (!dev) continue; if (dev->device_handler) { dev->device_handler(pentry, dev); } else { switch (pentry->type) { case SFI_DEV_TYPE_IPC: sfi_handle_ipc_dev(pentry, dev); break; case SFI_DEV_TYPE_SPI: sfi_handle_spi_dev(pentry, dev); break; case SFI_DEV_TYPE_I2C: sfi_handle_i2c_dev(pentry, dev); break; case SFI_DEV_TYPE_UART: case SFI_DEV_TYPE_HSI: default: break; } } } return 0; } static int __init intel_mid_platform_init(void) { sfi_table_parse(SFI_SIG_GPIO, NULL, NULL, sfi_parse_gpio); sfi_table_parse(SFI_SIG_DEVS, NULL, NULL, sfi_parse_devs); return 0; } arch_initcall(intel_mid_platform_init);