/* * This file is included twice from vdso2c.c. It generates code for 32-bit * and 64-bit vDSOs. We need both for 64-bit builds, since 32-bit vDSOs * are built for 32-bit userspace. */ /* * We're writing a section table for a few reasons: * * The Go runtime had a couple of bugs: it would read the section * table to try to figure out how many dynamic symbols there were (it * shouldn't have looked at the section table at all) and, if there * were no SHT_SYNDYM section table entry, it would use an * uninitialized value for the number of symbols. An empty DYNSYM * table would work, but I see no reason not to write a valid one (and * keep full performance for old Go programs). This hack is only * needed on x86_64. * * The bug was introduced on 2012-08-31 by: * https://code.google.com/p/go/source/detail?r=56ea40aac72b * and was fixed on 2014-06-13 by: * https://code.google.com/p/go/source/detail?r=fc1cd5e12595 * * Binutils has issues debugging the vDSO: it reads the section table to * find SHT_NOTE; it won't look at PT_NOTE for the in-memory vDSO, which * would break build-id if we removed the section table. Binutils * also requires that shstrndx != 0. See: * https://sourceware.org/bugzilla/show_bug.cgi?id=17064 * * elfutils might not look for PT_NOTE if there is a section table at * all. I don't know whether this matters for any practical purpose. * * For simplicity, rather than hacking up a partial section table, we * just write a mostly complete one. We omit non-dynamic symbols, * though, since they're rather large. * * Once binutils gets fixed, we might be able to drop this for all but * the 64-bit vdso, since build-id only works in kernel RPMs, and * systems that update to new enough kernel RPMs will likely update * binutils in sync. build-id has never worked for home-built kernel * RPMs without manual symlinking, and I suspect that no one ever does * that. */ struct BITSFUNC(fake_sections) { ELF(Shdr) *table; unsigned long table_offset; int count, max_count; int in_shstrndx; unsigned long shstr_offset; const char *shstrtab; size_t shstrtab_len; int out_shstrndx; }; static unsigned int BITSFUNC(find_shname)(struct BITSFUNC(fake_sections) *out, const char *name) { const char *outname = out->shstrtab; while (outname - out->shstrtab < out->shstrtab_len) { if (!strcmp(name, outname)) return (outname - out->shstrtab) + out->shstr_offset; outname += strlen(outname) + 1; } if (*name) printf("Warning: could not find output name \"%s\"\n", name); return out->shstr_offset + out->shstrtab_len - 1; /* Use a null. */ } static void BITSFUNC(init_sections)(struct BITSFUNC(fake_sections) *out) { if (!out->in_shstrndx) fail("didn't find the fake shstrndx\n"); memset(out->table, 0, out->max_count * sizeof(ELF(Shdr))); if (out->max_count < 1) fail("we need at least two fake output sections\n"); PUT_LE(&out->table[0].sh_type, SHT_NULL); PUT_LE(&out->table[0].sh_name, BITSFUNC(find_shname)(out, "")); out->count = 1; } static void BITSFUNC(copy_section)(struct BITSFUNC(fake_sections) *out, int in_idx, const ELF(Shdr) *in, const char *name) { uint64_t flags = GET_LE(&in->sh_flags); bool copy = flags & SHF_ALLOC && (GET_LE(&in->sh_size) || (GET_LE(&in->sh_type) != SHT_RELA && GET_LE(&in->sh_type) != SHT_REL)) && strcmp(name, ".altinstructions") && strcmp(name, ".altinstr_replacement"); if (!copy) return; if (out->count >= out->max_count) fail("too many copied sections (max = %d)\n", out->max_count); if (in_idx == out->in_shstrndx) out->out_shstrndx = out->count; out->table[out->count] = *in; PUT_LE(&out->table[out->count].sh_name, BITSFUNC(find_shname)(out, name)); /* elfutils requires that a strtab have the correct type. */ if (!strcmp(name, ".fake_shstrtab")) PUT_LE(&out->table[out->count].sh_type, SHT_STRTAB); out->count++; } static void BITSFUNC(go)(void *addr, size_t len, FILE *outfile, const char *name) { int found_load = 0; unsigned long load_size = -1; /* Work around bogus warning */ unsigned long data_size; ELF(Ehdr) *hdr = (ELF(Ehdr) *)addr; int i; unsigned long j; ELF(Shdr) *symtab_hdr = NULL, *strtab_hdr, *secstrings_hdr, *alt_sec = NULL; ELF(Dyn) *dyn = 0, *dyn_end = 0; const char *secstrings; uint64_t syms[NSYMS] = {}; struct BITSFUNC(fake_sections) fake_sections = {}; ELF(Phdr) *pt = (ELF(Phdr) *)(addr + GET_LE(&hdr->e_phoff)); /* Walk the segment table. */ for (i = 0; i < GET_LE(&hdr->e_phnum); i++) { if (GET_LE(&pt[i].p_type) == PT_LOAD) { if (found_load) fail("multiple PT_LOAD segs\n"); if (GET_LE(&pt[i].p_offset) != 0 || GET_LE(&pt[i].p_vaddr) != 0) fail("PT_LOAD in wrong place\n"); if (GET_LE(&pt[i].p_memsz) != GET_LE(&pt[i].p_filesz)) fail("cannot handle memsz != filesz\n"); load_size = GET_LE(&pt[i].p_memsz); found_load = 1; } else if (GET_LE(&pt[i].p_type) == PT_DYNAMIC) { dyn = addr + GET_LE(&pt[i].p_offset); dyn_end = addr + GET_LE(&pt[i].p_offset) + GET_LE(&pt[i].p_memsz); } } if (!found_load) fail("no PT_LOAD seg\n"); data_size = (load_size + 4095) / 4096 * 4096; /* Walk the dynamic table */ for (i = 0; dyn + i < dyn_end && GET_LE(&dyn[i].d_tag) != DT_NULL; i++) { typeof(dyn[i].d_tag) tag = GET_LE(&dyn[i].d_tag); if (tag == DT_REL || tag == DT_RELSZ || tag == DT_RELA || tag == DT_RELENT || tag == DT_TEXTREL) fail("vdso image contains dynamic relocations\n"); } /* Walk the section table */ secstrings_hdr = addr + GET_LE(&hdr->e_shoff) + GET_LE(&hdr->e_shentsize)*GET_LE(&hdr->e_shstrndx); secstrings = addr + GET_LE(&secstrings_hdr->sh_offset); for (i = 0; i < GET_LE(&hdr->e_shnum); i++) { ELF(Shdr) *sh = addr + GET_LE(&hdr->e_shoff) + GET_LE(&hdr->e_shentsize) * i; if (GET_LE(&sh->sh_type) == SHT_SYMTAB) symtab_hdr = sh; if (!strcmp(secstrings + GET_LE(&sh->sh_name), ".altinstructions")) alt_sec = sh; } if (!symtab_hdr) fail("no symbol table\n"); strtab_hdr = addr + GET_LE(&hdr->e_shoff) + GET_LE(&hdr->e_shentsize) * GET_LE(&symtab_hdr->sh_link); /* Walk the symbol table */ for (i = 0; i < GET_LE(&symtab_hdr->sh_size) / GET_LE(&symtab_hdr->sh_entsize); i++) { int k; ELF(Sym) *sym = addr + GET_LE(&symtab_hdr->sh_offset) + GET_LE(&symtab_hdr->sh_entsize) * i; const char *name = addr + GET_LE(&strtab_hdr->sh_offset) + GET_LE(&sym->st_name); for (k = 0; k < NSYMS; k++) { if (!strcmp(name, required_syms[k].name)) { if (syms[k]) { fail("duplicate symbol %s\n", required_syms[k].name); } syms[k] = GET_LE(&sym->st_value); } } if (!strcmp(name, "fake_shstrtab")) { ELF(Shdr) *sh; fake_sections.in_shstrndx = GET_LE(&sym->st_shndx); fake_sections.shstrtab = addr + GET_LE(&sym->st_value); fake_sections.shstrtab_len = GET_LE(&sym->st_size); sh = addr + GET_LE(&hdr->e_shoff) + GET_LE(&hdr->e_shentsize) * fake_sections.in_shstrndx; fake_sections.shstr_offset = GET_LE(&sym->st_value) - GET_LE(&sh->sh_addr); } } /* Build the output section table. */ if (!syms[sym_VDSO_FAKE_SECTION_TABLE_START] || !syms[sym_VDSO_FAKE_SECTION_TABLE_END]) fail("couldn't find fake section table\n"); if ((syms[sym_VDSO_FAKE_SECTION_TABLE_END] - syms[sym_VDSO_FAKE_SECTION_TABLE_START]) % sizeof(ELF(Shdr))) fail("fake section table size isn't a multiple of sizeof(Shdr)\n"); fake_sections.table = addr + syms[sym_VDSO_FAKE_SECTION_TABLE_START]; fake_sections.table_offset = syms[sym_VDSO_FAKE_SECTION_TABLE_START]; fake_sections.max_count = (syms[sym_VDSO_FAKE_SECTION_TABLE_END] - syms[sym_VDSO_FAKE_SECTION_TABLE_START]) / sizeof(ELF(Shdr)); BITSFUNC(init_sections)(&fake_sections); for (i = 0; i < GET_LE(&hdr->e_shnum); i++) { ELF(Shdr) *sh = addr + GET_LE(&hdr->e_shoff) + GET_LE(&hdr->e_shentsize) * i; BITSFUNC(copy_section)(&fake_sections, i, sh, secstrings + GET_LE(&sh->sh_name)); } if (!fake_sections.out_shstrndx) fail("didn't generate shstrndx?!?\n"); PUT_LE(&hdr->e_shoff, fake_sections.table_offset); PUT_LE(&hdr->e_shentsize, sizeof(ELF(Shdr))); PUT_LE(&hdr->e_shnum, fake_sections.count); PUT_LE(&hdr->e_shstrndx, fake_sections.out_shstrndx); /* Validate mapping addresses. */ for (i = 0; i < sizeof(special_pages) / sizeof(special_pages[0]); i++) { if (!syms[i]) continue; /* The mapping isn't used; ignore it. */ if (syms[i] % 4096) fail("%s must be a multiple of 4096\n", required_syms[i].name); if (syms[i] < data_size) fail("%s must be after the text mapping\n", required_syms[i].name); if (syms[sym_end_mapping] < syms[i] + 4096) fail("%s overruns end_mapping\n", required_syms[i].name); } if (syms[sym_end_mapping] % 4096) fail("end_mapping must be a multiple of 4096\n"); if (!name) { fwrite(addr, load_size, 1, outfile); return; } fprintf(outfile, "/* AUTOMATICALLY GENERATED -- DO NOT EDIT */\n\n"); fprintf(outfile, "#include \n"); fprintf(outfile, "#include \n"); fprintf(outfile, "#include \n"); fprintf(outfile, "\n"); fprintf(outfile, "static unsigned char raw_data[%lu] __page_aligned_data = {", data_size); for (j = 0; j < load_size; j++) { if (j % 10 == 0) fprintf(outfile, "\n\t"); fprintf(outfile, "0x%02X, ", (int)((unsigned char *)addr)[j]); } fprintf(outfile, "\n};\n\n"); fprintf(outfile, "static struct page *pages[%lu];\n\n", data_size / 4096); fprintf(outfile, "const struct vdso_image %s = {\n", name); fprintf(outfile, "\t.data = raw_data,\n"); fprintf(outfile, "\t.size = %lu,\n", data_size); fprintf(outfile, "\t.text_mapping = {\n"); fprintf(outfile, "\t\t.name = \"[vdso]\",\n"); fprintf(outfile, "\t\t.pages = pages,\n"); fprintf(outfile, "\t},\n"); if (alt_sec) { fprintf(outfile, "\t.alt = %lu,\n", (unsigned long)GET_LE(&alt_sec->sh_offset)); fprintf(outfile, "\t.alt_len = %lu,\n", (unsigned long)GET_LE(&alt_sec->sh_size)); } for (i = 0; i < NSYMS; i++) { if (required_syms[i].export && syms[i]) fprintf(outfile, "\t.sym_%s = 0x%" PRIx64 ",\n", required_syms[i].name, syms[i]); } fprintf(outfile, "};\n"); }