/* * Xen hypercall batching. * * Xen allows multiple hypercalls to be issued at once, using the * multicall interface. This allows the cost of trapping into the * hypervisor to be amortized over several calls. * * This file implements a simple interface for multicalls. There's a * per-cpu buffer of outstanding multicalls. When you want to queue a * multicall for issuing, you can allocate a multicall slot for the * call and its arguments, along with storage for space which is * pointed to by the arguments (for passing pointers to structures, * etc). When the multicall is actually issued, all the space for the * commands and allocated memory is freed for reuse. * * Multicalls are flushed whenever any of the buffers get full, or * when explicitly requested. There's no way to get per-multicall * return results back. It will BUG if any of the multicalls fail. * * Jeremy Fitzhardinge , XenSource Inc, 2007 */ #include #include #include #include "multicalls.h" #define MC_DEBUG 1 #define MC_BATCH 32 #define MC_ARGS (MC_BATCH * 16 / sizeof(u64)) struct mc_buffer { struct multicall_entry entries[MC_BATCH]; #if MC_DEBUG struct multicall_entry debug[MC_BATCH]; #endif u64 args[MC_ARGS]; struct callback { void (*fn)(void *); void *data; } callbacks[MC_BATCH]; unsigned mcidx, argidx, cbidx; }; static DEFINE_PER_CPU(struct mc_buffer, mc_buffer); DEFINE_PER_CPU(unsigned long, xen_mc_irq_flags); void xen_mc_flush(void) { struct mc_buffer *b = &__get_cpu_var(mc_buffer); int ret = 0; unsigned long flags; int i; BUG_ON(preemptible()); /* Disable interrupts in case someone comes in and queues something in the middle */ local_irq_save(flags); if (b->mcidx) { #if MC_DEBUG memcpy(b->debug, b->entries, b->mcidx * sizeof(struct multicall_entry)); #endif if (HYPERVISOR_multicall(b->entries, b->mcidx) != 0) BUG(); for (i = 0; i < b->mcidx; i++) if (b->entries[i].result < 0) ret++; #if MC_DEBUG if (ret) { printk(KERN_ERR "%d multicall(s) failed: cpu %d\n", ret, smp_processor_id()); for(i = 0; i < b->mcidx; i++) { printk(" call %2d/%d: op=%lu arg=[%lx] result=%ld\n", i+1, b->mcidx, b->debug[i].op, b->debug[i].args[0], b->entries[i].result); } } #endif b->mcidx = 0; b->argidx = 0; } else BUG_ON(b->argidx != 0); local_irq_restore(flags); for(i = 0; i < b->cbidx; i++) { struct callback *cb = &b->callbacks[i]; (*cb->fn)(cb->data); } b->cbidx = 0; BUG_ON(ret); } struct multicall_space __xen_mc_entry(size_t args) { struct mc_buffer *b = &__get_cpu_var(mc_buffer); struct multicall_space ret; unsigned argspace = (args + sizeof(u64) - 1) / sizeof(u64); BUG_ON(preemptible()); BUG_ON(argspace > MC_ARGS); if (b->mcidx == MC_BATCH || (b->argidx + argspace) > MC_ARGS) xen_mc_flush(); ret.mc = &b->entries[b->mcidx]; b->mcidx++; ret.args = &b->args[b->argidx]; b->argidx += argspace; return ret; } void xen_mc_callback(void (*fn)(void *), void *data) { struct mc_buffer *b = &__get_cpu_var(mc_buffer); struct callback *cb; if (b->cbidx == MC_BATCH) xen_mc_flush(); cb = &b->callbacks[b->cbidx++]; cb->fn = fn; cb->data = data; }