/* * arch/xtensa/mm/init.c * * Derived from MIPS, PPC. * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2001 - 2005 Tensilica Inc. * * Chris Zankel * Joe Taylor * Marc Gauthier * Kevin Chea */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DEBUG 0 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); //static DEFINE_SPINLOCK(tlb_lock); /* * This flag is used to indicate that the page was mapped and modified in * kernel space, so the cache is probably dirty at that address. * If cache aliasing is enabled and the page color mismatches, update_mmu_cache * synchronizes the caches if this bit is set. */ #define PG_cache_clean PG_arch_1 /* References to section boundaries */ extern char _ftext, _etext, _fdata, _edata, _rodata_end; extern char __init_begin, __init_end; /* * mem_reserve(start, end, must_exist) * * Reserve some memory from the memory pool. * * Parameters: * start Start of region, * end End of region, * must_exist Must exist in memory pool. * * Returns: * 0 (memory area couldn't be mapped) * -1 (success) */ int __init mem_reserve(unsigned long start, unsigned long end, int must_exist) { int i; if (start == end) return 0; start = start & PAGE_MASK; end = PAGE_ALIGN(end); for (i = 0; i < sysmem.nr_banks; i++) if (start < sysmem.bank[i].end && end >= sysmem.bank[i].start) break; if (i == sysmem.nr_banks) { if (must_exist) printk (KERN_WARNING "mem_reserve: [0x%0lx, 0x%0lx) " "not in any region!\n", start, end); return 0; } if (start > sysmem.bank[i].start) { if (end < sysmem.bank[i].end) { /* split entry */ if (sysmem.nr_banks >= SYSMEM_BANKS_MAX) panic("meminfo overflow\n"); sysmem.bank[sysmem.nr_banks].start = end; sysmem.bank[sysmem.nr_banks].end = sysmem.bank[i].end; sysmem.nr_banks++; } sysmem.bank[i].end = start; } else { if (end < sysmem.bank[i].end) sysmem.bank[i].start = end; else { /* remove entry */ sysmem.nr_banks--; sysmem.bank[i].start = sysmem.bank[sysmem.nr_banks].start; sysmem.bank[i].end = sysmem.bank[sysmem.nr_banks].end; } } return -1; } /* * Initialize the bootmem system and give it all the memory we have available. */ void __init bootmem_init(void) { unsigned long pfn; unsigned long bootmap_start, bootmap_size; int i; max_low_pfn = max_pfn = 0; min_low_pfn = ~0; for (i=0; i < sysmem.nr_banks; i++) { pfn = PAGE_ALIGN(sysmem.bank[i].start) >> PAGE_SHIFT; if (pfn < min_low_pfn) min_low_pfn = pfn; pfn = PAGE_ALIGN(sysmem.bank[i].end - 1) >> PAGE_SHIFT; if (pfn > max_pfn) max_pfn = pfn; } if (min_low_pfn > max_pfn) panic("No memory found!\n"); max_low_pfn = max_pfn < MAX_LOW_MEMORY >> PAGE_SHIFT ? max_pfn : MAX_LOW_MEMORY >> PAGE_SHIFT; /* Find an area to use for the bootmem bitmap. */ bootmap_size = bootmem_bootmap_pages(max_low_pfn) << PAGE_SHIFT; bootmap_start = ~0; for (i=0; i= bootmap_size) { bootmap_start = sysmem.bank[i].start; break; } if (bootmap_start == ~0UL) panic("Cannot find %ld bytes for bootmap\n", bootmap_size); /* Reserve the bootmem bitmap area */ mem_reserve(bootmap_start, bootmap_start + bootmap_size, 1); bootmap_size = init_bootmem_node(NODE_DATA(0), min_low_pfn, bootmap_start >> PAGE_SHIFT, max_low_pfn); /* Add all remaining memory pieces into the bootmem map */ for (i=0; iTLBCFG special registers ensure * that valid values exist in the register. For existing * PGSZID fields, zero selects the first element of the * page-size array. For nonexistant PGSZID fields, zero is * the best value to write. Also, when changing PGSZID * fields, the corresponding TLB must be flushed. */ set_itlbcfg_register (0); set_dtlbcfg_register (0); flush_tlb_all (); /* Set rasid register to a known value. */ set_rasid_register (ASID_ALL_RESERVED); /* Set PTEVADDR special register to the start of the page * table, which is in kernel mappable space (ie. not * statically mapped). This register's value is undefined on * reset. */ set_ptevaddr_register (PGTABLE_START); } /* * Initialize memory pages. */ void __init mem_init(void) { unsigned long codesize, reservedpages, datasize, initsize; unsigned long highmemsize, tmp, ram; max_mapnr = num_physpages = max_low_pfn; high_memory = (void *) __va(max_mapnr << PAGE_SHIFT); highmemsize = 0; #ifdef CONFIG_HIGHMEM #error HIGHGMEM not implemented in init.c #endif totalram_pages += free_all_bootmem(); reservedpages = ram = 0; for (tmp = 0; tmp < max_low_pfn; tmp++) { ram++; if (PageReserved(mem_map+tmp)) reservedpages++; } codesize = (unsigned long) &_etext - (unsigned long) &_ftext; datasize = (unsigned long) &_edata - (unsigned long) &_fdata; initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin; printk("Memory: %luk/%luk available (%ldk kernel code, %ldk reserved, " "%ldk data, %ldk init %ldk highmem)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT-10), ram << (PAGE_SHIFT-10), codesize >> 10, reservedpages << (PAGE_SHIFT-10), datasize >> 10, initsize >> 10, highmemsize >> 10); } void free_reserved_mem(void *start, void *end) { for (; start < end; start += PAGE_SIZE) { ClearPageReserved(virt_to_page(start)); init_page_count(virt_to_page(start)); free_page((unsigned long)start); totalram_pages++; } } #ifdef CONFIG_BLK_DEV_INITRD extern int initrd_is_mapped; void free_initrd_mem(unsigned long start, unsigned long end) { if (initrd_is_mapped) { free_reserved_mem((void*)start, (void*)end); printk ("Freeing initrd memory: %ldk freed\n",(end-start)>>10); } } #endif void free_initmem(void) { free_reserved_mem(&__init_begin, &__init_end); printk("Freeing unused kernel memory: %dk freed\n", (&__init_end - &__init_begin) >> 10); } void show_mem(void) { int i, free = 0, total = 0, reserved = 0; int shared = 0, cached = 0; printk("Mem-info:\n"); show_free_areas(); printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); i = max_mapnr; while (i-- > 0) { total++; if (PageReserved(mem_map+i)) reserved++; else if (PageSwapCache(mem_map+i)) cached++; else if (!page_count(mem_map + i)) free++; else shared += page_count(mem_map + i) - 1; } printk("%d pages of RAM\n", total); printk("%d reserved pages\n", reserved); printk("%d pages shared\n", shared); printk("%d pages swap cached\n",cached); printk("%d free pages\n", free); } /* ------------------------------------------------------------------------- */ #if (DCACHE_WAY_SIZE > PAGE_SIZE) /* * With cache aliasing, the page color of the page in kernel space and user * space might mismatch. We temporarily map the page to a different virtual * address with the same color and clear the page there. */ void clear_user_page(void *kaddr, unsigned long vaddr, struct page* page) { /* There shouldn't be any entries for this page. */ __flush_invalidate_dcache_page_phys(__pa(page_address(page))); if (!PAGE_COLOR_EQ(vaddr, kaddr)) { unsigned long v, p; /* Temporarily map page to DTLB_WAY_DCACHE_ALIAS0. */ spin_lock(&tlb_lock); p = (unsigned long)pte_val((mk_pte(page,PAGE_KERNEL))); kaddr = (void*)PAGE_COLOR_MAP0(vaddr); v = (unsigned long)kaddr | DTLB_WAY_DCACHE_ALIAS0; __asm__ __volatile__("wdtlb %0,%1; dsync" : :"a" (p), "a" (v)); clear_page(kaddr); spin_unlock(&tlb_lock); } else { clear_page(kaddr); } /* We need to make sure that i$ and d$ are coherent. */ clear_bit(PG_cache_clean, &page->flags); } /* * With cache aliasing, we have to make sure that the page color of the page * in kernel space matches that of the virtual user address before we read * the page. If the page color differ, we create a temporary DTLB entry with * the corrent page color and use this 'temporary' address as the source. * We then use the same approach as in clear_user_page and copy the data * to the kernel space and clear the PG_cache_clean bit to synchronize caches * later. * * Note: * Instead of using another 'way' for the temporary DTLB entry, we could * probably use the same entry that points to the kernel address (after * saving the original value and restoring it when we are done). */ void copy_user_page(void* to, void* from, unsigned long vaddr, struct page* to_page) { /* There shouldn't be any entries for the new page. */ __flush_invalidate_dcache_page_phys(__pa(page_address(to_page))); spin_lock(&tlb_lock); if (!PAGE_COLOR_EQ(vaddr, from)) { unsigned long v, p, t; __asm__ __volatile__ ("pdtlb %1,%2; rdtlb1 %0,%1" : "=a"(p), "=a"(t) : "a"(from)); from = (void*)PAGE_COLOR_MAP0(vaddr); v = (unsigned long)from | DTLB_WAY_DCACHE_ALIAS0; __asm__ __volatile__ ("wdtlb %0,%1; dsync" ::"a" (p), "a" (v)); } if (!PAGE_COLOR_EQ(vaddr, to)) { unsigned long v, p; p = (unsigned long)pte_val((mk_pte(to_page,PAGE_KERNEL))); to = (void*)PAGE_COLOR_MAP1(vaddr); v = (unsigned long)to | DTLB_WAY_DCACHE_ALIAS1; __asm__ __volatile__ ("wdtlb %0,%1; dsync" ::"a" (p), "a" (v)); } copy_page(to, from); spin_unlock(&tlb_lock); /* We need to make sure that i$ and d$ are coherent. */ clear_bit(PG_cache_clean, &to_page->flags); } /* * Any time the kernel writes to a user page cache page, or it is about to * read from a page cache page this routine is called. * * Note: * The kernel currently only provides one architecture bit in the page * flags that we use for I$/D$ coherency. Maybe, in future, we can * use a sepearte bit for deferred dcache aliasing: * If the page is not mapped yet, we only need to set a flag, * if mapped, we need to invalidate the page. */ // FIXME: we probably need this for WB caches not only for Page Coloring.. void flush_dcache_page(struct page *page) { unsigned long addr = __pa(page_address(page)); struct address_space *mapping = page_mapping(page); __flush_invalidate_dcache_page_phys(addr); if (!test_bit(PG_cache_clean, &page->flags)) return; /* If this page hasn't been mapped, yet, handle I$/D$ coherency later.*/ #if 0 if (mapping && !mapping_mapped(mapping)) clear_bit(PG_cache_clean, &page->flags); else #endif __invalidate_icache_page_phys(addr); } void flush_cache_range(struct vm_area_struct* vma, unsigned long s, unsigned long e) { __flush_invalidate_cache_all(); } void flush_cache_page(struct vm_area_struct* vma, unsigned long address, unsigned long pfn) { struct page *page = pfn_to_page(pfn); /* Remove any entry for the old mapping. */ if (current->active_mm == vma->vm_mm) { unsigned long addr = __pa(page_address(page)); __flush_invalidate_dcache_page_phys(addr); if ((vma->vm_flags & VM_EXEC) != 0) __invalidate_icache_page_phys(addr); } else { BUG(); } } #endif /* (DCACHE_WAY_SIZE > PAGE_SIZE) */ pte_t* pte_alloc_one_kernel (struct mm_struct* mm, unsigned long addr) { pte_t* pte = (pte_t*)__get_free_pages(GFP_KERNEL|__GFP_REPEAT, 0); if (likely(pte)) { pte_t* ptep = (pte_t*)(pte_val(*pte) + PAGE_OFFSET); int i; for (i = 0; i < 1024; i++, ptep++) pte_clear(mm, addr, ptep); } return pte; } struct page* pte_alloc_one(struct mm_struct *mm, unsigned long addr) { struct page *page; page = alloc_pages(GFP_KERNEL | __GFP_REPEAT, 0); if (likely(page)) { pte_t* ptep = kmap_atomic(page, KM_USER0); int i; for (i = 0; i < 1024; i++, ptep++) pte_clear(mm, addr, ptep); kunmap_atomic(ptep, KM_USER0); } return page; } /* * Handle D$/I$ coherency. * * Note: * We only have one architecture bit for the page flags, so we cannot handle * cache aliasing, yet. */ void update_mmu_cache(struct vm_area_struct * vma, unsigned long addr, pte_t pte) { unsigned long pfn = pte_pfn(pte); struct page *page; unsigned long vaddr = addr & PAGE_MASK; if (!pfn_valid(pfn)) return; page = pfn_to_page(pfn); invalidate_itlb_mapping(addr); invalidate_dtlb_mapping(addr); /* We have a new mapping. Use it. */ write_dtlb_entry(pte, dtlb_probe(addr)); /* If the processor can execute from this page, synchronize D$/I$. */ if ((vma->vm_flags & VM_EXEC) != 0) { write_itlb_entry(pte, itlb_probe(addr)); /* Synchronize caches, if not clean. */ if (!test_and_set_bit(PG_cache_clean, &page->flags)) { __flush_dcache_page(vaddr); __invalidate_icache_page(vaddr); } } }