/* Instantiate a public key crypto key from an X.509 Certificate * * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public Licence * as published by the Free Software Foundation; either version * 2 of the Licence, or (at your option) any later version. */ #define pr_fmt(fmt) "X.509: "fmt #include #include #include #include #include #include #include #include #include #include #include "asymmetric_keys.h" #include "public_key.h" #include "x509_parser.h" static bool use_builtin_keys; static struct asymmetric_key_id *ca_keyid; #ifndef MODULE static int __init ca_keys_setup(char *str) { if (!str) /* default system keyring */ return 1; if (strncmp(str, "id:", 3) == 0) { struct asymmetric_key_id *p; p = asymmetric_key_hex_to_key_id(str + 3); if (p == ERR_PTR(-EINVAL)) pr_err("Unparsable hex string in ca_keys\n"); else if (!IS_ERR(p)) ca_keyid = p; /* owner key 'id:xxxxxx' */ } else if (strcmp(str, "builtin") == 0) { use_builtin_keys = true; } return 1; } __setup("ca_keys=", ca_keys_setup); #endif /** * x509_request_asymmetric_key - Request a key by X.509 certificate params. * @keyring: The keys to search. * @kid: The key ID. * @partial: Use partial match if true, exact if false. * * Find a key in the given keyring by subject name and key ID. These might, * for instance, be the issuer name and the authority key ID of an X.509 * certificate that needs to be verified. */ struct key *x509_request_asymmetric_key(struct key *keyring, const struct asymmetric_key_id *kid, bool partial) { key_ref_t key; char *id, *p; /* Construct an identifier "id:". */ p = id = kmalloc(2 + 1 + kid->len * 2 + 1, GFP_KERNEL); if (!id) return ERR_PTR(-ENOMEM); if (partial) { *p++ = 'i'; *p++ = 'd'; } else { *p++ = 'e'; *p++ = 'x'; } *p++ = ':'; p = bin2hex(p, kid->data, kid->len); *p = 0; pr_debug("Look up: \"%s\"\n", id); key = keyring_search(make_key_ref(keyring, 1), &key_type_asymmetric, id); if (IS_ERR(key)) pr_debug("Request for key '%s' err %ld\n", id, PTR_ERR(key)); kfree(id); if (IS_ERR(key)) { switch (PTR_ERR(key)) { /* Hide some search errors */ case -EACCES: case -ENOTDIR: case -EAGAIN: return ERR_PTR(-ENOKEY); default: return ERR_CAST(key); } } pr_devel("<==%s() = 0 [%x]\n", __func__, key_serial(key_ref_to_ptr(key))); return key_ref_to_ptr(key); } EXPORT_SYMBOL_GPL(x509_request_asymmetric_key); /* * Set up the signature parameters in an X.509 certificate. This involves * digesting the signed data and extracting the signature. */ int x509_get_sig_params(struct x509_certificate *cert) { struct crypto_shash *tfm; struct shash_desc *desc; size_t digest_size, desc_size; void *digest; int ret; pr_devel("==>%s()\n", __func__); if (cert->unsupported_crypto) return -ENOPKG; if (cert->sig.rsa.s) return 0; cert->sig.rsa.s = mpi_read_raw_data(cert->raw_sig, cert->raw_sig_size); if (!cert->sig.rsa.s) return -ENOMEM; cert->sig.nr_mpi = 1; /* Allocate the hashing algorithm we're going to need and find out how * big the hash operational data will be. */ tfm = crypto_alloc_shash(hash_algo_name[cert->sig.pkey_hash_algo], 0, 0); if (IS_ERR(tfm)) { if (PTR_ERR(tfm) == -ENOENT) { cert->unsupported_crypto = true; return -ENOPKG; } return PTR_ERR(tfm); } desc_size = crypto_shash_descsize(tfm) + sizeof(*desc); digest_size = crypto_shash_digestsize(tfm); /* We allocate the hash operational data storage on the end of the * digest storage space. */ ret = -ENOMEM; digest = kzalloc(digest_size + desc_size, GFP_KERNEL); if (!digest) goto error; cert->sig.digest = digest; cert->sig.digest_size = digest_size; desc = digest + digest_size; desc->tfm = tfm; desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; ret = crypto_shash_init(desc); if (ret < 0) goto error; might_sleep(); ret = crypto_shash_finup(desc, cert->tbs, cert->tbs_size, digest); error: crypto_free_shash(tfm); pr_devel("<==%s() = %d\n", __func__, ret); return ret; } EXPORT_SYMBOL_GPL(x509_get_sig_params); /* * Check the signature on a certificate using the provided public key */ int x509_check_signature(const struct public_key *pub, struct x509_certificate *cert) { int ret; pr_devel("==>%s()\n", __func__); ret = x509_get_sig_params(cert); if (ret < 0) return ret; ret = public_key_verify_signature(pub, &cert->sig); if (ret == -ENOPKG) cert->unsupported_crypto = true; pr_debug("Cert Verification: %d\n", ret); return ret; } EXPORT_SYMBOL_GPL(x509_check_signature); /* * Check the new certificate against the ones in the trust keyring. If one of * those is the signing key and validates the new certificate, then mark the * new certificate as being trusted. * * Return 0 if the new certificate was successfully validated, 1 if we couldn't * find a matching parent certificate in the trusted list and an error if there * is a matching certificate but the signature check fails. */ static int x509_validate_trust(struct x509_certificate *cert, struct key *trust_keyring) { struct key *key; int ret = 1; if (!trust_keyring) return -EOPNOTSUPP; if (ca_keyid && !asymmetric_key_id_partial(cert->authority, ca_keyid)) return -EPERM; key = x509_request_asymmetric_key(trust_keyring, cert->authority, false); if (!IS_ERR(key)) { if (!use_builtin_keys || test_bit(KEY_FLAG_BUILTIN, &key->flags)) ret = x509_check_signature(key->payload.data, cert); key_put(key); } return ret; } /* * Attempt to parse a data blob for a key as an X509 certificate. */ static int x509_key_preparse(struct key_preparsed_payload *prep) { struct asymmetric_key_ids *kids; struct x509_certificate *cert; const char *q; size_t srlen, sulen; char *desc = NULL, *p; int ret; cert = x509_cert_parse(prep->data, prep->datalen); if (IS_ERR(cert)) return PTR_ERR(cert); pr_devel("Cert Issuer: %s\n", cert->issuer); pr_devel("Cert Subject: %s\n", cert->subject); if (cert->pub->pkey_algo >= PKEY_ALGO__LAST || cert->sig.pkey_algo >= PKEY_ALGO__LAST || cert->sig.pkey_hash_algo >= PKEY_HASH__LAST || !pkey_algo[cert->pub->pkey_algo] || !pkey_algo[cert->sig.pkey_algo] || !hash_algo_name[cert->sig.pkey_hash_algo]) { ret = -ENOPKG; goto error_free_cert; } pr_devel("Cert Key Algo: %s\n", pkey_algo_name[cert->pub->pkey_algo]); pr_devel("Cert Valid From: %04ld-%02d-%02d %02d:%02d:%02d\n", cert->valid_from.tm_year + 1900, cert->valid_from.tm_mon + 1, cert->valid_from.tm_mday, cert->valid_from.tm_hour, cert->valid_from.tm_min, cert->valid_from.tm_sec); pr_devel("Cert Valid To: %04ld-%02d-%02d %02d:%02d:%02d\n", cert->valid_to.tm_year + 1900, cert->valid_to.tm_mon + 1, cert->valid_to.tm_mday, cert->valid_to.tm_hour, cert->valid_to.tm_min, cert->valid_to.tm_sec); pr_devel("Cert Signature: %s + %s\n", pkey_algo_name[cert->sig.pkey_algo], hash_algo_name[cert->sig.pkey_hash_algo]); cert->pub->algo = pkey_algo[cert->pub->pkey_algo]; cert->pub->id_type = PKEY_ID_X509; /* Check the signature on the key if it appears to be self-signed */ if (!cert->authority || asymmetric_key_id_same(cert->skid, cert->authority)) { ret = x509_check_signature(cert->pub, cert); /* self-signed */ if (ret < 0) goto error_free_cert; } else if (!prep->trusted) { ret = x509_validate_trust(cert, get_system_trusted_keyring()); if (!ret) prep->trusted = 1; } /* Propose a description */ sulen = strlen(cert->subject); if (cert->raw_skid) { srlen = cert->raw_skid_size; q = cert->raw_skid; } else { srlen = cert->raw_serial_size; q = cert->raw_serial; } if (srlen > 1 && *q == 0) { srlen--; q++; } ret = -ENOMEM; desc = kmalloc(sulen + 2 + srlen * 2 + 1, GFP_KERNEL); if (!desc) goto error_free_cert; p = memcpy(desc, cert->subject, sulen); p += sulen; *p++ = ':'; *p++ = ' '; p = bin2hex(p, q, srlen); *p = 0; kids = kmalloc(sizeof(struct asymmetric_key_ids), GFP_KERNEL); if (!kids) goto error_free_desc; kids->id[0] = cert->id; kids->id[1] = cert->skid; /* We're pinning the module by being linked against it */ __module_get(public_key_subtype.owner); prep->type_data[0] = &public_key_subtype; prep->type_data[1] = kids; prep->payload[0] = cert->pub; prep->description = desc; prep->quotalen = 100; /* We've finished with the certificate */ cert->pub = NULL; cert->id = NULL; cert->skid = NULL; desc = NULL; ret = 0; error_free_desc: kfree(desc); error_free_cert: x509_free_certificate(cert); return ret; } static struct asymmetric_key_parser x509_key_parser = { .owner = THIS_MODULE, .name = "x509", .parse = x509_key_preparse, }; /* * Module stuff */ static int __init x509_key_init(void) { return register_asymmetric_key_parser(&x509_key_parser); } static void __exit x509_key_exit(void) { unregister_asymmetric_key_parser(&x509_key_parser); } module_init(x509_key_init); module_exit(x509_key_exit); MODULE_DESCRIPTION("X.509 certificate parser"); MODULE_LICENSE("GPL");