/* * echainiv: Encrypted Chain IV Generator * * This generator generates an IV based on a sequence number by xoring it * with a salt and then encrypting it with the same key as used to encrypt * the plain text. This algorithm requires that the block size be equal * to the IV size. It is mainly useful for CBC. * * This generator can only be used by algorithms where authentication * is performed after encryption (i.e., authenc). * * Copyright (c) 2015 Herbert Xu * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * */ #include #include #include #include #include #include #include #include #include #include #define MAX_IV_SIZE 16 static DEFINE_PER_CPU(u32 [MAX_IV_SIZE / sizeof(u32)], echainiv_iv); /* We don't care if we get preempted and read/write IVs from the next CPU. */ static void echainiv_read_iv(u8 *dst, unsigned size) { u32 *a = (u32 *)dst; u32 __percpu *b = echainiv_iv; for (; size >= 4; size -= 4) { *a++ = this_cpu_read(*b); b++; } } static void echainiv_write_iv(const u8 *src, unsigned size) { const u32 *a = (const u32 *)src; u32 __percpu *b = echainiv_iv; for (; size >= 4; size -= 4) { this_cpu_write(*b, *a); a++; b++; } } static void echainiv_encrypt_complete2(struct aead_request *req, int err) { struct aead_request *subreq = aead_request_ctx(req); struct crypto_aead *geniv; unsigned int ivsize; if (err == -EINPROGRESS) return; if (err) goto out; geniv = crypto_aead_reqtfm(req); ivsize = crypto_aead_ivsize(geniv); echainiv_write_iv(subreq->iv, ivsize); if (req->iv != subreq->iv) memcpy(req->iv, subreq->iv, ivsize); out: if (req->iv != subreq->iv) kzfree(subreq->iv); } static void echainiv_encrypt_complete(struct crypto_async_request *base, int err) { struct aead_request *req = base->data; echainiv_encrypt_complete2(req, err); aead_request_complete(req, err); } static int echainiv_encrypt(struct aead_request *req) { struct crypto_aead *geniv = crypto_aead_reqtfm(req); struct aead_geniv_ctx *ctx = crypto_aead_ctx(geniv); struct aead_request *subreq = aead_request_ctx(req); crypto_completion_t compl; void *data; u8 *info; unsigned int ivsize = crypto_aead_ivsize(geniv); int err; if (req->cryptlen < ivsize) return -EINVAL; aead_request_set_tfm(subreq, ctx->child); compl = echainiv_encrypt_complete; data = req; info = req->iv; if (req->src != req->dst) { struct blkcipher_desc desc = { .tfm = ctx->null, }; err = crypto_blkcipher_encrypt( &desc, req->dst, req->src, req->assoclen + req->cryptlen); if (err) return err; } if (unlikely(!IS_ALIGNED((unsigned long)info, crypto_aead_alignmask(geniv) + 1))) { info = kmalloc(ivsize, req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL: GFP_ATOMIC); if (!info) return -ENOMEM; memcpy(info, req->iv, ivsize); } aead_request_set_callback(subreq, req->base.flags, compl, data); aead_request_set_crypt(subreq, req->dst, req->dst, req->cryptlen, info); aead_request_set_ad(subreq, req->assoclen); crypto_xor(info, ctx->salt, ivsize); scatterwalk_map_and_copy(info, req->dst, req->assoclen, ivsize, 1); echainiv_read_iv(info, ivsize); err = crypto_aead_encrypt(subreq); echainiv_encrypt_complete2(req, err); return err; } static int echainiv_decrypt(struct aead_request *req) { struct crypto_aead *geniv = crypto_aead_reqtfm(req); struct aead_geniv_ctx *ctx = crypto_aead_ctx(geniv); struct aead_request *subreq = aead_request_ctx(req); crypto_completion_t compl; void *data; unsigned int ivsize = crypto_aead_ivsize(geniv); if (req->cryptlen < ivsize) return -EINVAL; aead_request_set_tfm(subreq, ctx->child); compl = req->base.complete; data = req->base.data; aead_request_set_callback(subreq, req->base.flags, compl, data); aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen - ivsize, req->iv); aead_request_set_ad(subreq, req->assoclen + ivsize); scatterwalk_map_and_copy(req->iv, req->src, req->assoclen, ivsize, 0); return crypto_aead_decrypt(subreq); } static int echainiv_aead_create(struct crypto_template *tmpl, struct rtattr **tb) { struct aead_instance *inst; struct crypto_aead_spawn *spawn; struct aead_alg *alg; int err; inst = aead_geniv_alloc(tmpl, tb, 0, 0); if (IS_ERR(inst)) return PTR_ERR(inst); spawn = aead_instance_ctx(inst); alg = crypto_spawn_aead_alg(spawn); err = -EINVAL; if (inst->alg.ivsize & (sizeof(u32) - 1) || inst->alg.ivsize > MAX_IV_SIZE) goto free_inst; inst->alg.encrypt = echainiv_encrypt; inst->alg.decrypt = echainiv_decrypt; inst->alg.init = aead_init_geniv; inst->alg.exit = aead_exit_geniv; inst->alg.base.cra_alignmask |= __alignof__(u32) - 1; inst->alg.base.cra_ctxsize = sizeof(struct aead_geniv_ctx); inst->alg.base.cra_ctxsize += inst->alg.ivsize; inst->free = aead_geniv_free; err = aead_register_instance(tmpl, inst); if (err) goto free_inst; out: return err; free_inst: aead_geniv_free(inst); goto out; } static void echainiv_free(struct crypto_instance *inst) { aead_geniv_free(aead_instance(inst)); } static struct crypto_template echainiv_tmpl = { .name = "echainiv", .create = echainiv_aead_create, .free = echainiv_free, .module = THIS_MODULE, }; static int __init echainiv_module_init(void) { return crypto_register_template(&echainiv_tmpl); } static void __exit echainiv_module_exit(void) { crypto_unregister_template(&echainiv_tmpl); } module_init(echainiv_module_init); module_exit(echainiv_module_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Encrypted Chain IV Generator"); MODULE_ALIAS_CRYPTO("echainiv");