/* * pcrypt - Parallel crypto wrapper. * * Copyright (C) 2009 secunet Security Networks AG * Copyright (C) 2009 Steffen Klassert * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include #include #include #include #include #include #include #include #include struct padata_pcrypt { struct padata_instance *pinst; struct workqueue_struct *wq; /* * Cpumask for callback CPUs. It should be * equal to serial cpumask of corresponding padata instance, * so it is updated when padata notifies us about serial * cpumask change. * * cb_cpumask is protected by RCU. This fact prevents us from * using cpumask_var_t directly because the actual type of * cpumsak_var_t depends on kernel configuration(particularly on * CONFIG_CPUMASK_OFFSTACK macro). Depending on the configuration * cpumask_var_t may be either a pointer to the struct cpumask * or a variable allocated on the stack. Thus we can not safely use * cpumask_var_t with RCU operations such as rcu_assign_pointer or * rcu_dereference. So cpumask_var_t is wrapped with struct * pcrypt_cpumask which makes possible to use it with RCU. */ struct pcrypt_cpumask { cpumask_var_t mask; } *cb_cpumask; struct notifier_block nblock; }; static struct padata_pcrypt pencrypt; static struct padata_pcrypt pdecrypt; static struct kset *pcrypt_kset; struct pcrypt_instance_ctx { struct crypto_spawn spawn; unsigned int tfm_count; }; struct pcrypt_aead_ctx { struct crypto_aead *child; unsigned int cb_cpu; }; static int pcrypt_do_parallel(struct padata_priv *padata, unsigned int *cb_cpu, struct padata_pcrypt *pcrypt) { unsigned int cpu_index, cpu, i; struct pcrypt_cpumask *cpumask; cpu = *cb_cpu; rcu_read_lock_bh(); cpumask = rcu_dereference(pcrypt->cb_cpumask); if (cpumask_test_cpu(cpu, cpumask->mask)) goto out; if (!cpumask_weight(cpumask->mask)) goto out; cpu_index = cpu % cpumask_weight(cpumask->mask); cpu = cpumask_first(cpumask->mask); for (i = 0; i < cpu_index; i++) cpu = cpumask_next(cpu, cpumask->mask); *cb_cpu = cpu; out: rcu_read_unlock_bh(); return padata_do_parallel(pcrypt->pinst, padata, cpu); } static int pcrypt_aead_setkey(struct crypto_aead *parent, const u8 *key, unsigned int keylen) { struct pcrypt_aead_ctx *ctx = crypto_aead_ctx(parent); return crypto_aead_setkey(ctx->child, key, keylen); } static int pcrypt_aead_setauthsize(struct crypto_aead *parent, unsigned int authsize) { struct pcrypt_aead_ctx *ctx = crypto_aead_ctx(parent); return crypto_aead_setauthsize(ctx->child, authsize); } static void pcrypt_aead_serial(struct padata_priv *padata) { struct pcrypt_request *preq = pcrypt_padata_request(padata); struct aead_request *req = pcrypt_request_ctx(preq); aead_request_complete(req->base.data, padata->info); } static void pcrypt_aead_giv_serial(struct padata_priv *padata) { struct pcrypt_request *preq = pcrypt_padata_request(padata); struct aead_givcrypt_request *req = pcrypt_request_ctx(preq); aead_request_complete(req->areq.base.data, padata->info); } static void pcrypt_aead_done(struct crypto_async_request *areq, int err) { struct aead_request *req = areq->data; struct pcrypt_request *preq = aead_request_ctx(req); struct padata_priv *padata = pcrypt_request_padata(preq); padata->info = err; req->base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; padata_do_serial(padata); } static void pcrypt_aead_enc(struct padata_priv *padata) { struct pcrypt_request *preq = pcrypt_padata_request(padata); struct aead_request *req = pcrypt_request_ctx(preq); padata->info = crypto_aead_encrypt(req); if (padata->info == -EINPROGRESS) return; padata_do_serial(padata); } static int pcrypt_aead_encrypt(struct aead_request *req) { int err; struct pcrypt_request *preq = aead_request_ctx(req); struct aead_request *creq = pcrypt_request_ctx(preq); struct padata_priv *padata = pcrypt_request_padata(preq); struct crypto_aead *aead = crypto_aead_reqtfm(req); struct pcrypt_aead_ctx *ctx = crypto_aead_ctx(aead); u32 flags = aead_request_flags(req); memset(padata, 0, sizeof(struct padata_priv)); padata->parallel = pcrypt_aead_enc; padata->serial = pcrypt_aead_serial; aead_request_set_tfm(creq, ctx->child); aead_request_set_callback(creq, flags & ~CRYPTO_TFM_REQ_MAY_SLEEP, pcrypt_aead_done, req); aead_request_set_crypt(creq, req->src, req->dst, req->cryptlen, req->iv); aead_request_set_assoc(creq, req->assoc, req->assoclen); err = pcrypt_do_parallel(padata, &ctx->cb_cpu, &pencrypt); if (!err) return -EINPROGRESS; return err; } static void pcrypt_aead_dec(struct padata_priv *padata) { struct pcrypt_request *preq = pcrypt_padata_request(padata); struct aead_request *req = pcrypt_request_ctx(preq); padata->info = crypto_aead_decrypt(req); if (padata->info == -EINPROGRESS) return; padata_do_serial(padata); } static int pcrypt_aead_decrypt(struct aead_request *req) { int err; struct pcrypt_request *preq = aead_request_ctx(req); struct aead_request *creq = pcrypt_request_ctx(preq); struct padata_priv *padata = pcrypt_request_padata(preq); struct crypto_aead *aead = crypto_aead_reqtfm(req); struct pcrypt_aead_ctx *ctx = crypto_aead_ctx(aead); u32 flags = aead_request_flags(req); memset(padata, 0, sizeof(struct padata_priv)); padata->parallel = pcrypt_aead_dec; padata->serial = pcrypt_aead_serial; aead_request_set_tfm(creq, ctx->child); aead_request_set_callback(creq, flags & ~CRYPTO_TFM_REQ_MAY_SLEEP, pcrypt_aead_done, req); aead_request_set_crypt(creq, req->src, req->dst, req->cryptlen, req->iv); aead_request_set_assoc(creq, req->assoc, req->assoclen); err = pcrypt_do_parallel(padata, &ctx->cb_cpu, &pdecrypt); if (!err) return -EINPROGRESS; return err; } static void pcrypt_aead_givenc(struct padata_priv *padata) { struct pcrypt_request *preq = pcrypt_padata_request(padata); struct aead_givcrypt_request *req = pcrypt_request_ctx(preq); padata->info = crypto_aead_givencrypt(req); if (padata->info == -EINPROGRESS) return; padata_do_serial(padata); } static int pcrypt_aead_givencrypt(struct aead_givcrypt_request *req) { int err; struct aead_request *areq = &req->areq; struct pcrypt_request *preq = aead_request_ctx(areq); struct aead_givcrypt_request *creq = pcrypt_request_ctx(preq); struct padata_priv *padata = pcrypt_request_padata(preq); struct crypto_aead *aead = aead_givcrypt_reqtfm(req); struct pcrypt_aead_ctx *ctx = crypto_aead_ctx(aead); u32 flags = aead_request_flags(areq); memset(padata, 0, sizeof(struct padata_priv)); padata->parallel = pcrypt_aead_givenc; padata->serial = pcrypt_aead_giv_serial; aead_givcrypt_set_tfm(creq, ctx->child); aead_givcrypt_set_callback(creq, flags & ~CRYPTO_TFM_REQ_MAY_SLEEP, pcrypt_aead_done, areq); aead_givcrypt_set_crypt(creq, areq->src, areq->dst, areq->cryptlen, areq->iv); aead_givcrypt_set_assoc(creq, areq->assoc, areq->assoclen); aead_givcrypt_set_giv(creq, req->giv, req->seq); err = pcrypt_do_parallel(padata, &ctx->cb_cpu, &pencrypt); if (!err) return -EINPROGRESS; return err; } static int pcrypt_aead_init_tfm(struct crypto_tfm *tfm) { int cpu, cpu_index; struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); struct pcrypt_instance_ctx *ictx = crypto_instance_ctx(inst); struct pcrypt_aead_ctx *ctx = crypto_tfm_ctx(tfm); struct crypto_aead *cipher; ictx->tfm_count++; cpu_index = ictx->tfm_count % cpumask_weight(cpu_online_mask); ctx->cb_cpu = cpumask_first(cpu_online_mask); for (cpu = 0; cpu < cpu_index; cpu++) ctx->cb_cpu = cpumask_next(ctx->cb_cpu, cpu_online_mask); cipher = crypto_spawn_aead(crypto_instance_ctx(inst)); if (IS_ERR(cipher)) return PTR_ERR(cipher); ctx->child = cipher; tfm->crt_aead.reqsize = sizeof(struct pcrypt_request) + sizeof(struct aead_givcrypt_request) + crypto_aead_reqsize(cipher); return 0; } static void pcrypt_aead_exit_tfm(struct crypto_tfm *tfm) { struct pcrypt_aead_ctx *ctx = crypto_tfm_ctx(tfm); crypto_free_aead(ctx->child); } static struct crypto_instance *pcrypt_alloc_instance(struct crypto_alg *alg) { struct crypto_instance *inst; struct pcrypt_instance_ctx *ctx; int err; inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); if (!inst) { inst = ERR_PTR(-ENOMEM); goto out; } err = -ENAMETOOLONG; if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "pcrypt(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME) goto out_free_inst; memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME); ctx = crypto_instance_ctx(inst); err = crypto_init_spawn(&ctx->spawn, alg, inst, CRYPTO_ALG_TYPE_MASK); if (err) goto out_free_inst; inst->alg.cra_priority = alg->cra_priority + 100; inst->alg.cra_blocksize = alg->cra_blocksize; inst->alg.cra_alignmask = alg->cra_alignmask; out: return inst; out_free_inst: kfree(inst); inst = ERR_PTR(err); goto out; } static struct crypto_instance *pcrypt_alloc_aead(struct rtattr **tb, u32 type, u32 mask) { struct crypto_instance *inst; struct crypto_alg *alg; alg = crypto_get_attr_alg(tb, type, (mask & CRYPTO_ALG_TYPE_MASK)); if (IS_ERR(alg)) return ERR_CAST(alg); inst = pcrypt_alloc_instance(alg); if (IS_ERR(inst)) goto out_put_alg; inst->alg.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC; inst->alg.cra_type = &crypto_aead_type; inst->alg.cra_aead.ivsize = alg->cra_aead.ivsize; inst->alg.cra_aead.geniv = alg->cra_aead.geniv; inst->alg.cra_aead.maxauthsize = alg->cra_aead.maxauthsize; inst->alg.cra_ctxsize = sizeof(struct pcrypt_aead_ctx); inst->alg.cra_init = pcrypt_aead_init_tfm; inst->alg.cra_exit = pcrypt_aead_exit_tfm; inst->alg.cra_aead.setkey = pcrypt_aead_setkey; inst->alg.cra_aead.setauthsize = pcrypt_aead_setauthsize; inst->alg.cra_aead.encrypt = pcrypt_aead_encrypt; inst->alg.cra_aead.decrypt = pcrypt_aead_decrypt; inst->alg.cra_aead.givencrypt = pcrypt_aead_givencrypt; out_put_alg: crypto_mod_put(alg); return inst; } static struct crypto_instance *pcrypt_alloc(struct rtattr **tb) { struct crypto_attr_type *algt; algt = crypto_get_attr_type(tb); if (IS_ERR(algt)) return ERR_CAST(algt); switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) { case CRYPTO_ALG_TYPE_AEAD: return pcrypt_alloc_aead(tb, algt->type, algt->mask); } return ERR_PTR(-EINVAL); } static void pcrypt_free(struct crypto_instance *inst) { struct pcrypt_instance_ctx *ctx = crypto_instance_ctx(inst); crypto_drop_spawn(&ctx->spawn); kfree(inst); } static int pcrypt_cpumask_change_notify(struct notifier_block *self, unsigned long val, void *data) { struct padata_pcrypt *pcrypt; struct pcrypt_cpumask *new_mask, *old_mask; struct padata_cpumask *cpumask = (struct padata_cpumask *)data; if (!(val & PADATA_CPU_SERIAL)) return 0; pcrypt = container_of(self, struct padata_pcrypt, nblock); new_mask = kmalloc(sizeof(*new_mask), GFP_KERNEL); if (!new_mask) return -ENOMEM; if (!alloc_cpumask_var(&new_mask->mask, GFP_KERNEL)) { kfree(new_mask); return -ENOMEM; } old_mask = pcrypt->cb_cpumask; cpumask_copy(new_mask->mask, cpumask->cbcpu); rcu_assign_pointer(pcrypt->cb_cpumask, new_mask); synchronize_rcu_bh(); free_cpumask_var(old_mask->mask); kfree(old_mask); return 0; } static int pcrypt_sysfs_add(struct padata_instance *pinst, const char *name) { int ret; pinst->kobj.kset = pcrypt_kset; ret = kobject_add(&pinst->kobj, NULL, name); if (!ret) kobject_uevent(&pinst->kobj, KOBJ_ADD); return ret; } static int pcrypt_init_padata(struct padata_pcrypt *pcrypt, const char *name) { int ret = -ENOMEM; struct pcrypt_cpumask *mask; get_online_cpus(); pcrypt->wq = alloc_workqueue("%s", WQ_MEM_RECLAIM | WQ_CPU_INTENSIVE, 1, name); if (!pcrypt->wq) goto err; pcrypt->pinst = padata_alloc_possible(pcrypt->wq); if (!pcrypt->pinst) goto err_destroy_workqueue; mask = kmalloc(sizeof(*mask), GFP_KERNEL); if (!mask) goto err_free_padata; if (!alloc_cpumask_var(&mask->mask, GFP_KERNEL)) { kfree(mask); goto err_free_padata; } cpumask_and(mask->mask, cpu_possible_mask, cpu_online_mask); rcu_assign_pointer(pcrypt->cb_cpumask, mask); pcrypt->nblock.notifier_call = pcrypt_cpumask_change_notify; ret = padata_register_cpumask_notifier(pcrypt->pinst, &pcrypt->nblock); if (ret) goto err_free_cpumask; ret = pcrypt_sysfs_add(pcrypt->pinst, name); if (ret) goto err_unregister_notifier; put_online_cpus(); return ret; err_unregister_notifier: padata_unregister_cpumask_notifier(pcrypt->pinst, &pcrypt->nblock); err_free_cpumask: free_cpumask_var(mask->mask); kfree(mask); err_free_padata: padata_free(pcrypt->pinst); err_destroy_workqueue: destroy_workqueue(pcrypt->wq); err: put_online_cpus(); return ret; } static void pcrypt_fini_padata(struct padata_pcrypt *pcrypt) { free_cpumask_var(pcrypt->cb_cpumask->mask); kfree(pcrypt->cb_cpumask); padata_stop(pcrypt->pinst); padata_unregister_cpumask_notifier(pcrypt->pinst, &pcrypt->nblock); destroy_workqueue(pcrypt->wq); padata_free(pcrypt->pinst); } static struct crypto_template pcrypt_tmpl = { .name = "pcrypt", .alloc = pcrypt_alloc, .free = pcrypt_free, .module = THIS_MODULE, }; static int __init pcrypt_init(void) { int err = -ENOMEM; pcrypt_kset = kset_create_and_add("pcrypt", NULL, kernel_kobj); if (!pcrypt_kset) goto err; err = pcrypt_init_padata(&pencrypt, "pencrypt"); if (err) goto err_unreg_kset; err = pcrypt_init_padata(&pdecrypt, "pdecrypt"); if (err) goto err_deinit_pencrypt; padata_start(pencrypt.pinst); padata_start(pdecrypt.pinst); return crypto_register_template(&pcrypt_tmpl); err_deinit_pencrypt: pcrypt_fini_padata(&pencrypt); err_unreg_kset: kset_unregister(pcrypt_kset); err: return err; } static void __exit pcrypt_exit(void) { pcrypt_fini_padata(&pencrypt); pcrypt_fini_padata(&pdecrypt); kset_unregister(pcrypt_kset); crypto_unregister_template(&pcrypt_tmpl); } module_init(pcrypt_init); module_exit(pcrypt_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Steffen Klassert "); MODULE_DESCRIPTION("Parallel crypto wrapper");