// SPDX-License-Identifier: GPL-2.0-or-later /* * Shared crypto simd helpers * * Copyright (c) 2012 Jussi Kivilinna * Copyright (c) 2016 Herbert Xu * Copyright (c) 2019 Google LLC * * Based on aesni-intel_glue.c by: * Copyright (C) 2008, Intel Corp. * Author: Huang Ying */ /* * Shared crypto SIMD helpers. These functions dynamically create and register * an skcipher or AEAD algorithm that wraps another, internal algorithm. The * wrapper ensures that the internal algorithm is only executed in a context * where SIMD instructions are usable, i.e. where may_use_simd() returns true. * If SIMD is already usable, the wrapper directly calls the internal algorithm. * Otherwise it defers execution to a workqueue via cryptd. * * This is an alternative to the internal algorithm implementing a fallback for * the !may_use_simd() case itself. * * Note that the wrapper algorithm is asynchronous, i.e. it has the * CRYPTO_ALG_ASYNC flag set. Therefore it won't be found by users who * explicitly allocate a synchronous algorithm. */ #include #include #include #include #include #include #include #include /* skcipher support */ struct simd_skcipher_alg { const char *ialg_name; struct skcipher_alg alg; }; struct simd_skcipher_ctx { struct cryptd_skcipher *cryptd_tfm; }; static int simd_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int key_len) { struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); struct crypto_skcipher *child = &ctx->cryptd_tfm->base; int err; crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_REQ_MASK); err = crypto_skcipher_setkey(child, key, key_len); crypto_skcipher_set_flags(tfm, crypto_skcipher_get_flags(child) & CRYPTO_TFM_RES_MASK); return err; } static int simd_skcipher_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_request *subreq; struct crypto_skcipher *child; subreq = skcipher_request_ctx(req); *subreq = *req; if (!crypto_simd_usable() || (in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm))) child = &ctx->cryptd_tfm->base; else child = cryptd_skcipher_child(ctx->cryptd_tfm); skcipher_request_set_tfm(subreq, child); return crypto_skcipher_encrypt(subreq); } static int simd_skcipher_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_request *subreq; struct crypto_skcipher *child; subreq = skcipher_request_ctx(req); *subreq = *req; if (!crypto_simd_usable() || (in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm))) child = &ctx->cryptd_tfm->base; else child = cryptd_skcipher_child(ctx->cryptd_tfm); skcipher_request_set_tfm(subreq, child); return crypto_skcipher_decrypt(subreq); } static void simd_skcipher_exit(struct crypto_skcipher *tfm) { struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); cryptd_free_skcipher(ctx->cryptd_tfm); } static int simd_skcipher_init(struct crypto_skcipher *tfm) { struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); struct cryptd_skcipher *cryptd_tfm; struct simd_skcipher_alg *salg; struct skcipher_alg *alg; unsigned reqsize; alg = crypto_skcipher_alg(tfm); salg = container_of(alg, struct simd_skcipher_alg, alg); cryptd_tfm = cryptd_alloc_skcipher(salg->ialg_name, CRYPTO_ALG_INTERNAL, CRYPTO_ALG_INTERNAL); if (IS_ERR(cryptd_tfm)) return PTR_ERR(cryptd_tfm); ctx->cryptd_tfm = cryptd_tfm; reqsize = crypto_skcipher_reqsize(cryptd_skcipher_child(cryptd_tfm)); reqsize = max(reqsize, crypto_skcipher_reqsize(&cryptd_tfm->base)); reqsize += sizeof(struct skcipher_request); crypto_skcipher_set_reqsize(tfm, reqsize); return 0; } struct simd_skcipher_alg *simd_skcipher_create_compat(const char *algname, const char *drvname, const char *basename) { struct simd_skcipher_alg *salg; struct crypto_skcipher *tfm; struct skcipher_alg *ialg; struct skcipher_alg *alg; int err; tfm = crypto_alloc_skcipher(basename, CRYPTO_ALG_INTERNAL, CRYPTO_ALG_INTERNAL | CRYPTO_ALG_ASYNC); if (IS_ERR(tfm)) return ERR_CAST(tfm); ialg = crypto_skcipher_alg(tfm); salg = kzalloc(sizeof(*salg), GFP_KERNEL); if (!salg) { salg = ERR_PTR(-ENOMEM); goto out_put_tfm; } salg->ialg_name = basename; alg = &salg->alg; err = -ENAMETOOLONG; if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >= CRYPTO_MAX_ALG_NAME) goto out_free_salg; if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", drvname) >= CRYPTO_MAX_ALG_NAME) goto out_free_salg; alg->base.cra_flags = CRYPTO_ALG_ASYNC; alg->base.cra_priority = ialg->base.cra_priority; alg->base.cra_blocksize = ialg->base.cra_blocksize; alg->base.cra_alignmask = ialg->base.cra_alignmask; alg->base.cra_module = ialg->base.cra_module; alg->base.cra_ctxsize = sizeof(struct simd_skcipher_ctx); alg->ivsize = ialg->ivsize; alg->chunksize = ialg->chunksize; alg->min_keysize = ialg->min_keysize; alg->max_keysize = ialg->max_keysize; alg->init = simd_skcipher_init; alg->exit = simd_skcipher_exit; alg->setkey = simd_skcipher_setkey; alg->encrypt = simd_skcipher_encrypt; alg->decrypt = simd_skcipher_decrypt; err = crypto_register_skcipher(alg); if (err) goto out_free_salg; out_put_tfm: crypto_free_skcipher(tfm); return salg; out_free_salg: kfree(salg); salg = ERR_PTR(err); goto out_put_tfm; } EXPORT_SYMBOL_GPL(simd_skcipher_create_compat); struct simd_skcipher_alg *simd_skcipher_create(const char *algname, const char *basename) { char drvname[CRYPTO_MAX_ALG_NAME]; if (snprintf(drvname, CRYPTO_MAX_ALG_NAME, "simd-%s", basename) >= CRYPTO_MAX_ALG_NAME) return ERR_PTR(-ENAMETOOLONG); return simd_skcipher_create_compat(algname, drvname, basename); } EXPORT_SYMBOL_GPL(simd_skcipher_create); void simd_skcipher_free(struct simd_skcipher_alg *salg) { crypto_unregister_skcipher(&salg->alg); kfree(salg); } EXPORT_SYMBOL_GPL(simd_skcipher_free); int simd_register_skciphers_compat(struct skcipher_alg *algs, int count, struct simd_skcipher_alg **simd_algs) { int err; int i; const char *algname; const char *drvname; const char *basename; struct simd_skcipher_alg *simd; err = crypto_register_skciphers(algs, count); if (err) return err; for (i = 0; i < count; i++) { WARN_ON(strncmp(algs[i].base.cra_name, "__", 2)); WARN_ON(strncmp(algs[i].base.cra_driver_name, "__", 2)); algname = algs[i].base.cra_name + 2; drvname = algs[i].base.cra_driver_name + 2; basename = algs[i].base.cra_driver_name; simd = simd_skcipher_create_compat(algname, drvname, basename); err = PTR_ERR(simd); if (IS_ERR(simd)) goto err_unregister; simd_algs[i] = simd; } return 0; err_unregister: simd_unregister_skciphers(algs, count, simd_algs); return err; } EXPORT_SYMBOL_GPL(simd_register_skciphers_compat); void simd_unregister_skciphers(struct skcipher_alg *algs, int count, struct simd_skcipher_alg **simd_algs) { int i; crypto_unregister_skciphers(algs, count); for (i = 0; i < count; i++) { if (simd_algs[i]) { simd_skcipher_free(simd_algs[i]); simd_algs[i] = NULL; } } } EXPORT_SYMBOL_GPL(simd_unregister_skciphers); /* AEAD support */ struct simd_aead_alg { const char *ialg_name; struct aead_alg alg; }; struct simd_aead_ctx { struct cryptd_aead *cryptd_tfm; }; static int simd_aead_setkey(struct crypto_aead *tfm, const u8 *key, unsigned int key_len) { struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm); struct crypto_aead *child = &ctx->cryptd_tfm->base; int err; crypto_aead_clear_flags(child, CRYPTO_TFM_REQ_MASK); crypto_aead_set_flags(child, crypto_aead_get_flags(tfm) & CRYPTO_TFM_REQ_MASK); err = crypto_aead_setkey(child, key, key_len); crypto_aead_set_flags(tfm, crypto_aead_get_flags(child) & CRYPTO_TFM_RES_MASK); return err; } static int simd_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm); struct crypto_aead *child = &ctx->cryptd_tfm->base; return crypto_aead_setauthsize(child, authsize); } static int simd_aead_encrypt(struct aead_request *req) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm); struct aead_request *subreq; struct crypto_aead *child; subreq = aead_request_ctx(req); *subreq = *req; if (!crypto_simd_usable() || (in_atomic() && cryptd_aead_queued(ctx->cryptd_tfm))) child = &ctx->cryptd_tfm->base; else child = cryptd_aead_child(ctx->cryptd_tfm); aead_request_set_tfm(subreq, child); return crypto_aead_encrypt(subreq); } static int simd_aead_decrypt(struct aead_request *req) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm); struct aead_request *subreq; struct crypto_aead *child; subreq = aead_request_ctx(req); *subreq = *req; if (!crypto_simd_usable() || (in_atomic() && cryptd_aead_queued(ctx->cryptd_tfm))) child = &ctx->cryptd_tfm->base; else child = cryptd_aead_child(ctx->cryptd_tfm); aead_request_set_tfm(subreq, child); return crypto_aead_decrypt(subreq); } static void simd_aead_exit(struct crypto_aead *tfm) { struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm); cryptd_free_aead(ctx->cryptd_tfm); } static int simd_aead_init(struct crypto_aead *tfm) { struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm); struct cryptd_aead *cryptd_tfm; struct simd_aead_alg *salg; struct aead_alg *alg; unsigned reqsize; alg = crypto_aead_alg(tfm); salg = container_of(alg, struct simd_aead_alg, alg); cryptd_tfm = cryptd_alloc_aead(salg->ialg_name, CRYPTO_ALG_INTERNAL, CRYPTO_ALG_INTERNAL); if (IS_ERR(cryptd_tfm)) return PTR_ERR(cryptd_tfm); ctx->cryptd_tfm = cryptd_tfm; reqsize = crypto_aead_reqsize(cryptd_aead_child(cryptd_tfm)); reqsize = max(reqsize, crypto_aead_reqsize(&cryptd_tfm->base)); reqsize += sizeof(struct aead_request); crypto_aead_set_reqsize(tfm, reqsize); return 0; } struct simd_aead_alg *simd_aead_create_compat(const char *algname, const char *drvname, const char *basename) { struct simd_aead_alg *salg; struct crypto_aead *tfm; struct aead_alg *ialg; struct aead_alg *alg; int err; tfm = crypto_alloc_aead(basename, CRYPTO_ALG_INTERNAL, CRYPTO_ALG_INTERNAL | CRYPTO_ALG_ASYNC); if (IS_ERR(tfm)) return ERR_CAST(tfm); ialg = crypto_aead_alg(tfm); salg = kzalloc(sizeof(*salg), GFP_KERNEL); if (!salg) { salg = ERR_PTR(-ENOMEM); goto out_put_tfm; } salg->ialg_name = basename; alg = &salg->alg; err = -ENAMETOOLONG; if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >= CRYPTO_MAX_ALG_NAME) goto out_free_salg; if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", drvname) >= CRYPTO_MAX_ALG_NAME) goto out_free_salg; alg->base.cra_flags = CRYPTO_ALG_ASYNC; alg->base.cra_priority = ialg->base.cra_priority; alg->base.cra_blocksize = ialg->base.cra_blocksize; alg->base.cra_alignmask = ialg->base.cra_alignmask; alg->base.cra_module = ialg->base.cra_module; alg->base.cra_ctxsize = sizeof(struct simd_aead_ctx); alg->ivsize = ialg->ivsize; alg->maxauthsize = ialg->maxauthsize; alg->chunksize = ialg->chunksize; alg->init = simd_aead_init; alg->exit = simd_aead_exit; alg->setkey = simd_aead_setkey; alg->setauthsize = simd_aead_setauthsize; alg->encrypt = simd_aead_encrypt; alg->decrypt = simd_aead_decrypt; err = crypto_register_aead(alg); if (err) goto out_free_salg; out_put_tfm: crypto_free_aead(tfm); return salg; out_free_salg: kfree(salg); salg = ERR_PTR(err); goto out_put_tfm; } EXPORT_SYMBOL_GPL(simd_aead_create_compat); struct simd_aead_alg *simd_aead_create(const char *algname, const char *basename) { char drvname[CRYPTO_MAX_ALG_NAME]; if (snprintf(drvname, CRYPTO_MAX_ALG_NAME, "simd-%s", basename) >= CRYPTO_MAX_ALG_NAME) return ERR_PTR(-ENAMETOOLONG); return simd_aead_create_compat(algname, drvname, basename); } EXPORT_SYMBOL_GPL(simd_aead_create); void simd_aead_free(struct simd_aead_alg *salg) { crypto_unregister_aead(&salg->alg); kfree(salg); } EXPORT_SYMBOL_GPL(simd_aead_free); int simd_register_aeads_compat(struct aead_alg *algs, int count, struct simd_aead_alg **simd_algs) { int err; int i; const char *algname; const char *drvname; const char *basename; struct simd_aead_alg *simd; err = crypto_register_aeads(algs, count); if (err) return err; for (i = 0; i < count; i++) { WARN_ON(strncmp(algs[i].base.cra_name, "__", 2)); WARN_ON(strncmp(algs[i].base.cra_driver_name, "__", 2)); algname = algs[i].base.cra_name + 2; drvname = algs[i].base.cra_driver_name + 2; basename = algs[i].base.cra_driver_name; simd = simd_aead_create_compat(algname, drvname, basename); err = PTR_ERR(simd); if (IS_ERR(simd)) goto err_unregister; simd_algs[i] = simd; } return 0; err_unregister: simd_unregister_aeads(algs, count, simd_algs); return err; } EXPORT_SYMBOL_GPL(simd_register_aeads_compat); void simd_unregister_aeads(struct aead_alg *algs, int count, struct simd_aead_alg **simd_algs) { int i; crypto_unregister_aeads(algs, count); for (i = 0; i < count; i++) { if (simd_algs[i]) { simd_aead_free(simd_algs[i]); simd_algs[i] = NULL; } } } EXPORT_SYMBOL_GPL(simd_unregister_aeads); MODULE_LICENSE("GPL");