/* * Faraday Technology FTIDE010 driver * Copyright (C) 2017 Linus Walleij * * Includes portions of the SL2312/SL3516/Gemini PATA driver * Copyright (C) 2003 StorLine, Inc * Copyright (C) 2009 Janos Laube * Copyright (C) 2010 Frederic Pecourt * Copyright (C) 2011 Tobias Waldvogel */ #include #include #include #include #include #include #include #include "sata_gemini.h" #define DRV_NAME "pata_ftide010" /** * struct ftide010 - state container for the Faraday FTIDE010 * @dev: pointer back to the device representing this controller * @base: remapped I/O space address * @pclk: peripheral clock for the IDE block * @host: pointer to the ATA host for this device * @master_cbl: master cable type * @slave_cbl: slave cable type * @sg: Gemini SATA bridge pointer, if running on the Gemini * @master_to_sata0: Gemini SATA bridge: the ATA master is connected * to the SATA0 bridge * @slave_to_sata0: Gemini SATA bridge: the ATA slave is connected * to the SATA0 bridge * @master_to_sata1: Gemini SATA bridge: the ATA master is connected * to the SATA1 bridge * @slave_to_sata1: Gemini SATA bridge: the ATA slave is connected * to the SATA1 bridge */ struct ftide010 { struct device *dev; void __iomem *base; struct clk *pclk; struct ata_host *host; unsigned int master_cbl; unsigned int slave_cbl; /* Gemini-specific properties */ struct sata_gemini *sg; bool master_to_sata0; bool slave_to_sata0; bool master_to_sata1; bool slave_to_sata1; }; #define FTIDE010_DMA_REG 0x00 #define FTIDE010_DMA_STATUS 0x02 #define FTIDE010_IDE_BMDTPR 0x04 #define FTIDE010_IDE_DEVICE_ID 0x08 #define FTIDE010_PIO_TIMING 0x10 #define FTIDE010_MWDMA_TIMING 0x11 #define FTIDE010_UDMA_TIMING0 0x12 /* Master */ #define FTIDE010_UDMA_TIMING1 0x13 /* Slave */ #define FTIDE010_CLK_MOD 0x14 /* These registers are mapped directly to the IDE registers */ #define FTIDE010_CMD_DATA 0x20 #define FTIDE010_ERROR_FEATURES 0x21 #define FTIDE010_NSECT 0x22 #define FTIDE010_LBAL 0x23 #define FTIDE010_LBAM 0x24 #define FTIDE010_LBAH 0x25 #define FTIDE010_DEVICE 0x26 #define FTIDE010_STATUS_COMMAND 0x27 #define FTIDE010_ALTSTAT_CTRL 0x36 /* Set this bit for UDMA mode 5 and 6 */ #define FTIDE010_UDMA_TIMING_MODE_56 BIT(7) /* 0 = 50 MHz, 1 = 66 MHz */ #define FTIDE010_CLK_MOD_DEV0_CLK_SEL BIT(0) #define FTIDE010_CLK_MOD_DEV1_CLK_SEL BIT(1) /* Enable UDMA on a device */ #define FTIDE010_CLK_MOD_DEV0_UDMA_EN BIT(4) #define FTIDE010_CLK_MOD_DEV1_UDMA_EN BIT(5) static struct scsi_host_template pata_ftide010_sht = { ATA_BMDMA_SHT(DRV_NAME), }; /* * Bus timings * * The unit of the below required timings is two clock periods of the ATA * reference clock which is 30 nanoseconds per unit at 66MHz and 20 * nanoseconds per unit at 50 MHz. The PIO timings assume 33MHz speed for * PIO. * * pio_active_time: array of 5 elements for T2 timing for Mode 0, * 1, 2, 3 and 4. Range 0..15. * pio_recovery_time: array of 5 elements for T2l timing for Mode 0, * 1, 2, 3 and 4. Range 0..15. * mdma_50_active_time: array of 4 elements for Td timing for multi * word DMA, Mode 0, 1, and 2 at 50 MHz. Range 0..15. * mdma_50_recovery_time: array of 4 elements for Tk timing for * multi word DMA, Mode 0, 1 and 2 at 50 MHz. Range 0..15. * mdma_66_active_time: array of 4 elements for Td timing for multi * word DMA, Mode 0, 1 and 2 at 66 MHz. Range 0..15. * mdma_66_recovery_time: array of 4 elements for Tk timing for * multi word DMA, Mode 0, 1 and 2 at 66 MHz. Range 0..15. * udma_50_setup_time: array of 4 elements for Tvds timing for ultra * DMA, Mode 0, 1, 2, 3, 4 and 5 at 50 MHz. Range 0..7. * udma_50_hold_time: array of 4 elements for Tdvh timing for * multi word DMA, Mode 0, 1, 2, 3, 4 and 5 at 50 MHz, Range 0..7. * udma_66_setup_time: array of 4 elements for Tvds timing for multi * word DMA, Mode 0, 1, 2, 3, 4, 5 and 6 at 66 MHz. Range 0..7. * udma_66_hold_time: array of 4 elements for Tdvh timing for * multi word DMA, Mode 0, 1, 2, 3, 4, 5 and 6 at 66 MHz. Range 0..7. */ static const u8 pio_active_time[5] = {10, 10, 10, 3, 3}; static const u8 pio_recovery_time[5] = {10, 3, 1, 3, 1}; static const u8 mwdma_50_active_time[3] = {6, 2, 2}; static const u8 mwdma_50_recovery_time[3] = {6, 2, 1}; static const u8 mwdma_66_active_time[3] = {8, 3, 3}; static const u8 mwdma_66_recovery_time[3] = {8, 2, 1}; static const u8 udma_50_setup_time[6] = {3, 3, 2, 2, 1, 1}; static const u8 udma_50_hold_time[6] = {3, 1, 1, 1, 1, 1}; static const u8 udma_66_setup_time[7] = {4, 4, 3, 2, }; static const u8 udma_66_hold_time[7] = {}; /* * We set 66 MHz for all MWDMA modes */ static const bool set_mdma_66_mhz[] = { true, true, true, true }; /* * We set 66 MHz for UDMA modes 3, 4 and 6 and no others */ static const bool set_udma_66_mhz[] = { false, false, false, true, true, false, true }; static void ftide010_set_dmamode(struct ata_port *ap, struct ata_device *adev) { struct ftide010 *ftide = ap->host->private_data; u8 speed = adev->dma_mode; u8 devno = adev->devno & 1; u8 udma_en_mask; u8 f66m_en_mask; u8 clkreg; u8 timreg; u8 i; /* Target device 0 (master) or 1 (slave) */ if (!devno) { udma_en_mask = FTIDE010_CLK_MOD_DEV0_UDMA_EN; f66m_en_mask = FTIDE010_CLK_MOD_DEV0_CLK_SEL; } else { udma_en_mask = FTIDE010_CLK_MOD_DEV1_UDMA_EN; f66m_en_mask = FTIDE010_CLK_MOD_DEV1_CLK_SEL; } clkreg = readb(ftide->base + FTIDE010_CLK_MOD); clkreg &= ~udma_en_mask; clkreg &= ~f66m_en_mask; if (speed & XFER_UDMA_0) { i = speed & ~XFER_UDMA_0; dev_dbg(ftide->dev, "set UDMA mode %02x, index %d\n", speed, i); clkreg |= udma_en_mask; if (set_udma_66_mhz[i]) { clkreg |= f66m_en_mask; timreg = udma_66_setup_time[i] << 4 | udma_66_hold_time[i]; } else { timreg = udma_50_setup_time[i] << 4 | udma_50_hold_time[i]; } /* A special bit needs to be set for modes 5 and 6 */ if (i >= 5) timreg |= FTIDE010_UDMA_TIMING_MODE_56; dev_dbg(ftide->dev, "UDMA write clkreg = %02x, timreg = %02x\n", clkreg, timreg); writeb(clkreg, ftide->base + FTIDE010_CLK_MOD); writeb(timreg, ftide->base + FTIDE010_UDMA_TIMING0 + devno); } else { i = speed & ~XFER_MW_DMA_0; dev_dbg(ftide->dev, "set MWDMA mode %02x, index %d\n", speed, i); if (set_mdma_66_mhz[i]) { clkreg |= f66m_en_mask; timreg = mwdma_66_active_time[i] << 4 | mwdma_66_recovery_time[i]; } else { timreg = mwdma_50_active_time[i] << 4 | mwdma_50_recovery_time[i]; } dev_dbg(ftide->dev, "MWDMA write clkreg = %02x, timreg = %02x\n", clkreg, timreg); /* This will affect all devices */ writeb(clkreg, ftide->base + FTIDE010_CLK_MOD); writeb(timreg, ftide->base + FTIDE010_MWDMA_TIMING); } /* * Store the current device (master or slave) in ap->private_data * so that .qc_issue() can detect if this changes and reprogram * the DMA settings. */ ap->private_data = adev; return; } static void ftide010_set_piomode(struct ata_port *ap, struct ata_device *adev) { struct ftide010 *ftide = ap->host->private_data; u8 pio = adev->pio_mode - XFER_PIO_0; dev_dbg(ftide->dev, "set PIO mode %02x, index %d\n", adev->pio_mode, pio); writeb(pio_active_time[pio] << 4 | pio_recovery_time[pio], ftide->base + FTIDE010_PIO_TIMING); } /* * We implement our own qc_issue() callback since we may need to set up * the timings differently for master and slave transfers: the CLK_MOD_REG * and MWDMA_TIMING_REG is shared between master and slave, so reprogramming * this may be necessary. */ static unsigned int ftide010_qc_issue(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct ata_device *adev = qc->dev; /* * If the device changed, i.e. slave->master, master->slave, * then set up the DMA mode again so we are sure the timings * are correct. */ if (adev != ap->private_data && ata_dma_enabled(adev)) ftide010_set_dmamode(ap, adev); return ata_bmdma_qc_issue(qc); } static struct ata_port_operations pata_ftide010_port_ops = { .inherits = &ata_bmdma_port_ops, .set_dmamode = ftide010_set_dmamode, .set_piomode = ftide010_set_piomode, .qc_issue = ftide010_qc_issue, }; static struct ata_port_info ftide010_port_info[] = { { .flags = ATA_FLAG_SLAVE_POSS, .mwdma_mask = ATA_MWDMA2, .udma_mask = ATA_UDMA6, .pio_mask = ATA_PIO4, .port_ops = &pata_ftide010_port_ops, }, }; #if IS_ENABLED(CONFIG_SATA_GEMINI) static int pata_ftide010_gemini_port_start(struct ata_port *ap) { struct ftide010 *ftide = ap->host->private_data; struct device *dev = ftide->dev; struct sata_gemini *sg = ftide->sg; int bridges = 0; int ret; ret = ata_bmdma_port_start(ap); if (ret) return ret; if (ftide->master_to_sata0) { dev_info(dev, "SATA0 (master) start\n"); ret = gemini_sata_start_bridge(sg, 0); if (!ret) bridges++; } if (ftide->master_to_sata1) { dev_info(dev, "SATA1 (master) start\n"); ret = gemini_sata_start_bridge(sg, 1); if (!ret) bridges++; } /* Avoid double-starting */ if (ftide->slave_to_sata0 && !ftide->master_to_sata0) { dev_info(dev, "SATA0 (slave) start\n"); ret = gemini_sata_start_bridge(sg, 0); if (!ret) bridges++; } /* Avoid double-starting */ if (ftide->slave_to_sata1 && !ftide->master_to_sata1) { dev_info(dev, "SATA1 (slave) start\n"); ret = gemini_sata_start_bridge(sg, 1); if (!ret) bridges++; } dev_info(dev, "brought %d bridges online\n", bridges); return (bridges > 0) ? 0 : -EINVAL; // -ENODEV; } static void pata_ftide010_gemini_port_stop(struct ata_port *ap) { struct ftide010 *ftide = ap->host->private_data; struct device *dev = ftide->dev; struct sata_gemini *sg = ftide->sg; if (ftide->master_to_sata0) { dev_info(dev, "SATA0 (master) stop\n"); gemini_sata_stop_bridge(sg, 0); } if (ftide->master_to_sata1) { dev_info(dev, "SATA1 (master) stop\n"); gemini_sata_stop_bridge(sg, 1); } /* Avoid double-stopping */ if (ftide->slave_to_sata0 && !ftide->master_to_sata0) { dev_info(dev, "SATA0 (slave) stop\n"); gemini_sata_stop_bridge(sg, 0); } /* Avoid double-stopping */ if (ftide->slave_to_sata1 && !ftide->master_to_sata1) { dev_info(dev, "SATA1 (slave) stop\n"); gemini_sata_stop_bridge(sg, 1); } } static int pata_ftide010_gemini_cable_detect(struct ata_port *ap) { struct ftide010 *ftide = ap->host->private_data; /* * Return the master cable, I have no clue how to return a different * cable for the slave than for the master. */ return ftide->master_cbl; } static int pata_ftide010_gemini_init(struct ftide010 *ftide, bool is_ata1) { struct device *dev = ftide->dev; struct sata_gemini *sg; enum gemini_muxmode muxmode; /* Look up SATA bridge */ sg = gemini_sata_bridge_get(); if (IS_ERR(sg)) return PTR_ERR(sg); ftide->sg = sg; muxmode = gemini_sata_get_muxmode(sg); /* Special ops */ pata_ftide010_port_ops.port_start = pata_ftide010_gemini_port_start; pata_ftide010_port_ops.port_stop = pata_ftide010_gemini_port_stop; pata_ftide010_port_ops.cable_detect = pata_ftide010_gemini_cable_detect; /* Flag port as SATA-capable */ if (gemini_sata_bridge_enabled(sg, is_ata1)) ftide010_port_info[0].flags |= ATA_FLAG_SATA; /* * We assume that a simple 40-wire cable is used in the PATA mode. * if you're adding a system using the PATA interface, make sure * the right cable is set up here, it might be necessary to use * special hardware detection or encode the cable type in the device * tree with special properties. */ if (!is_ata1) { switch (muxmode) { case GEMINI_MUXMODE_0: ftide->master_cbl = ATA_CBL_SATA; ftide->slave_cbl = ATA_CBL_PATA40; ftide->master_to_sata0 = true; break; case GEMINI_MUXMODE_1: ftide->master_cbl = ATA_CBL_SATA; ftide->slave_cbl = ATA_CBL_NONE; ftide->master_to_sata0 = true; break; case GEMINI_MUXMODE_2: ftide->master_cbl = ATA_CBL_PATA40; ftide->slave_cbl = ATA_CBL_PATA40; break; case GEMINI_MUXMODE_3: ftide->master_cbl = ATA_CBL_SATA; ftide->slave_cbl = ATA_CBL_SATA; ftide->master_to_sata0 = true; ftide->slave_to_sata1 = true; break; } } else { switch (muxmode) { case GEMINI_MUXMODE_0: ftide->master_cbl = ATA_CBL_SATA; ftide->slave_cbl = ATA_CBL_NONE; ftide->master_to_sata1 = true; break; case GEMINI_MUXMODE_1: ftide->master_cbl = ATA_CBL_SATA; ftide->slave_cbl = ATA_CBL_PATA40; ftide->master_to_sata1 = true; break; case GEMINI_MUXMODE_2: ftide->master_cbl = ATA_CBL_SATA; ftide->slave_cbl = ATA_CBL_SATA; ftide->slave_to_sata0 = true; ftide->master_to_sata1 = true; break; case GEMINI_MUXMODE_3: ftide->master_cbl = ATA_CBL_PATA40; ftide->slave_cbl = ATA_CBL_PATA40; break; } } dev_info(dev, "set up Gemini PATA%d\n", is_ata1); return 0; } #else static int pata_ftide010_gemini_init(struct ftide010 *ftide, bool is_ata1) { return -ENOTSUPP; } #endif static int pata_ftide010_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; const struct ata_port_info pi = ftide010_port_info[0]; const struct ata_port_info *ppi[] = { &pi, NULL }; struct ftide010 *ftide; struct resource *res; int irq; int ret; int i; ftide = devm_kzalloc(dev, sizeof(*ftide), GFP_KERNEL); if (!ftide) return -ENOMEM; ftide->dev = dev; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) return -ENODEV; ftide->base = devm_ioremap_resource(dev, res); if (IS_ERR(ftide->base)) return PTR_ERR(ftide->base); ftide->pclk = devm_clk_get(dev, "PCLK"); if (!IS_ERR(ftide->pclk)) { ret = clk_prepare_enable(ftide->pclk); if (ret) { dev_err(dev, "failed to enable PCLK\n"); return ret; } } /* Some special Cortina Gemini init, if needed */ if (of_device_is_compatible(np, "cortina,gemini-pata")) { /* * We need to know which instance is probing (the * Gemini has two instances of FTIDE010) and we do * this simply by looking at the physical base * address, which is 0x63400000 for ATA1, else we * are ATA0. This will also set up the cable types. */ ret = pata_ftide010_gemini_init(ftide, (res->start == 0x63400000)); if (ret) goto err_dis_clk; } else { /* Else assume we are connected using PATA40 */ ftide->master_cbl = ATA_CBL_PATA40; ftide->slave_cbl = ATA_CBL_PATA40; } ftide->host = ata_host_alloc_pinfo(dev, ppi, 1); if (!ftide->host) { ret = -ENOMEM; goto err_dis_clk; } ftide->host->private_data = ftide; for (i = 0; i < ftide->host->n_ports; i++) { struct ata_port *ap = ftide->host->ports[i]; struct ata_ioports *ioaddr = &ap->ioaddr; ioaddr->bmdma_addr = ftide->base + FTIDE010_DMA_REG; ioaddr->cmd_addr = ftide->base + FTIDE010_CMD_DATA; ioaddr->ctl_addr = ftide->base + FTIDE010_ALTSTAT_CTRL; ioaddr->altstatus_addr = ftide->base + FTIDE010_ALTSTAT_CTRL; ata_sff_std_ports(ioaddr); } dev_info(dev, "device ID %08x, irq %d, reg %pR\n", readl(ftide->base + FTIDE010_IDE_DEVICE_ID), irq, res); ret = ata_host_activate(ftide->host, irq, ata_bmdma_interrupt, 0, &pata_ftide010_sht); if (ret) goto err_dis_clk; return 0; err_dis_clk: if (!IS_ERR(ftide->pclk)) clk_disable_unprepare(ftide->pclk); return ret; } static int pata_ftide010_remove(struct platform_device *pdev) { struct ata_host *host = platform_get_drvdata(pdev); struct ftide010 *ftide = host->private_data; ata_host_detach(ftide->host); if (!IS_ERR(ftide->pclk)) clk_disable_unprepare(ftide->pclk); return 0; } static const struct of_device_id pata_ftide010_of_match[] = { { .compatible = "faraday,ftide010", }, {}, }; static struct platform_driver pata_ftide010_driver = { .driver = { .name = DRV_NAME, .of_match_table = of_match_ptr(pata_ftide010_of_match), }, .probe = pata_ftide010_probe, .remove = pata_ftide010_remove, }; module_platform_driver(pata_ftide010_driver); MODULE_AUTHOR("Linus Walleij "); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:" DRV_NAME);