/* * driver.c - centralized device driver management * * Copyright (c) 2002-3 Patrick Mochel * Copyright (c) 2002-3 Open Source Development Labs * * This file is released under the GPLv2 * */ #include #include #include #include #include #include "base.h" #define to_dev(node) container_of(node, struct device, driver_list) #define to_drv(obj) container_of(obj, struct device_driver, kobj) /** * driver_create_file - create sysfs file for driver. * @drv: driver. * @attr: driver attribute descriptor. */ int driver_create_file(struct device_driver * drv, struct driver_attribute * attr) { int error; if (get_driver(drv)) { error = sysfs_create_file(&drv->kobj, &attr->attr); put_driver(drv); } else error = -EINVAL; return error; } /** * driver_remove_file - remove sysfs file for driver. * @drv: driver. * @attr: driver attribute descriptor. */ void driver_remove_file(struct device_driver * drv, struct driver_attribute * attr) { if (get_driver(drv)) { sysfs_remove_file(&drv->kobj, &attr->attr); put_driver(drv); } } /** * get_driver - increment driver reference count. * @drv: driver. */ struct device_driver * get_driver(struct device_driver * drv) { return drv ? to_drv(kobject_get(&drv->kobj)) : NULL; } /** * put_driver - decrement driver's refcount. * @drv: driver. */ void put_driver(struct device_driver * drv) { kobject_put(&drv->kobj); } /** * driver_register - register driver with bus * @drv: driver to register * * We pass off most of the work to the bus_add_driver() call, * since most of the things we have to do deal with the bus * structures. * * The one interesting aspect is that we setup @drv->unloaded * as a completion that gets complete when the driver reference * count reaches 0. */ int driver_register(struct device_driver * drv) { INIT_LIST_HEAD(&drv->devices); init_completion(&drv->unloaded); return bus_add_driver(drv); } /** * driver_unregister - remove driver from system. * @drv: driver. * * Again, we pass off most of the work to the bus-level call. * * Though, once that is done, we wait until @drv->unloaded is completed. * This will block until the driver refcount reaches 0, and it is * released. Only modular drivers will call this function, and we * have to guarantee that it won't complete, letting the driver * unload until all references are gone. */ void driver_unregister(struct device_driver * drv) { bus_remove_driver(drv); wait_for_completion(&drv->unloaded); } /** * driver_find - locate driver on a bus by its name. * @name: name of the driver. * @bus: bus to scan for the driver. * * Call kset_find_obj() to iterate over list of drivers on * a bus to find driver by name. Return driver if found. * * Note that kset_find_obj increments driver's reference count. */ struct device_driver *driver_find(const char *name, struct bus_type *bus) { struct kobject *k = kset_find_obj(&bus->drivers, name); if (k) return to_drv(k); return NULL; } EXPORT_SYMBOL_GPL(driver_register); EXPORT_SYMBOL_GPL(driver_unregister); EXPORT_SYMBOL_GPL(get_driver); EXPORT_SYMBOL_GPL(put_driver); EXPORT_SYMBOL_GPL(driver_find); EXPORT_SYMBOL_GPL(driver_create_file); EXPORT_SYMBOL_GPL(driver_remove_file);