// SPDX-License-Identifier: GPL-2.0 /* Copyright (C) 2019-2020 ARM Limited or its affiliates. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cctrng.h" #define CC_REG_LOW(name) (name ## _BIT_SHIFT) #define CC_REG_HIGH(name) (CC_REG_LOW(name) + name ## _BIT_SIZE - 1) #define CC_GENMASK(name) GENMASK(CC_REG_HIGH(name), CC_REG_LOW(name)) #define CC_REG_FLD_GET(reg_name, fld_name, reg_val) \ (FIELD_GET(CC_GENMASK(CC_ ## reg_name ## _ ## fld_name), reg_val)) #define CC_HW_RESET_LOOP_COUNT 10 #define CC_TRNG_SUSPEND_TIMEOUT 3000 /* data circular buffer in words must be: * - of a power-of-2 size (limitation of circ_buf.h macros) * - at least 6, the size generated in the EHR according to HW implementation */ #define CCTRNG_DATA_BUF_WORDS 32 /* The timeout for the TRNG operation should be calculated with the formula: * Timeout = EHR_NUM * VN_COEFF * EHR_LENGTH * SAMPLE_CNT * SCALE_VALUE * while: * - SAMPLE_CNT is input value from the characterisation process * - all the rest are constants */ #define EHR_NUM 1 #define VN_COEFF 4 #define EHR_LENGTH CC_TRNG_EHR_IN_BITS #define SCALE_VALUE 2 #define CCTRNG_TIMEOUT(smpl_cnt) \ (EHR_NUM * VN_COEFF * EHR_LENGTH * smpl_cnt * SCALE_VALUE) struct cctrng_drvdata { struct platform_device *pdev; void __iomem *cc_base; struct clk *clk; struct hwrng rng; u32 active_rosc; /* Sampling interval for each ring oscillator: * count of ring oscillator cycles between consecutive bits sampling. * Value of 0 indicates non-valid rosc */ u32 smpl_ratio[CC_TRNG_NUM_OF_ROSCS]; u32 data_buf[CCTRNG_DATA_BUF_WORDS]; struct circ_buf circ; struct work_struct compwork; struct work_struct startwork; /* pending_hw - 1 when HW is pending, 0 when it is idle */ atomic_t pending_hw; /* protects against multiple concurrent consumers of data_buf */ spinlock_t read_lock; }; /* functions for write/read CC registers */ static inline void cc_iowrite(struct cctrng_drvdata *drvdata, u32 reg, u32 val) { iowrite32(val, (drvdata->cc_base + reg)); } static inline u32 cc_ioread(struct cctrng_drvdata *drvdata, u32 reg) { return ioread32(drvdata->cc_base + reg); } static int cc_trng_pm_get(struct device *dev) { int rc = 0; rc = pm_runtime_get_sync(dev); /* pm_runtime_get_sync() can return 1 as a valid return code */ return (rc == 1 ? 0 : rc); } static void cc_trng_pm_put_suspend(struct device *dev) { int rc = 0; pm_runtime_mark_last_busy(dev); rc = pm_runtime_put_autosuspend(dev); if (rc) dev_err(dev, "pm_runtime_put_autosuspend returned %x\n", rc); } static int cc_trng_pm_init(struct cctrng_drvdata *drvdata) { struct device *dev = &(drvdata->pdev->dev); /* must be before the enabling to avoid redundant suspending */ pm_runtime_set_autosuspend_delay(dev, CC_TRNG_SUSPEND_TIMEOUT); pm_runtime_use_autosuspend(dev); /* set us as active - note we won't do PM ops until cc_trng_pm_go()! */ return pm_runtime_set_active(dev); } static void cc_trng_pm_go(struct cctrng_drvdata *drvdata) { struct device *dev = &(drvdata->pdev->dev); /* enable the PM module*/ pm_runtime_enable(dev); } static void cc_trng_pm_fini(struct cctrng_drvdata *drvdata) { struct device *dev = &(drvdata->pdev->dev); pm_runtime_disable(dev); } static inline int cc_trng_parse_sampling_ratio(struct cctrng_drvdata *drvdata) { struct device *dev = &(drvdata->pdev->dev); struct device_node *np = drvdata->pdev->dev.of_node; int rc; int i; /* ret will be set to 0 if at least one rosc has (sampling ratio > 0) */ int ret = -EINVAL; rc = of_property_read_u32_array(np, "arm,rosc-ratio", drvdata->smpl_ratio, CC_TRNG_NUM_OF_ROSCS); if (rc) { /* arm,rosc-ratio was not found in device tree */ return rc; } /* verify that at least one rosc has (sampling ratio > 0) */ for (i = 0; i < CC_TRNG_NUM_OF_ROSCS; ++i) { dev_dbg(dev, "rosc %d sampling ratio %u", i, drvdata->smpl_ratio[i]); if (drvdata->smpl_ratio[i] > 0) ret = 0; } return ret; } static int cc_trng_change_rosc(struct cctrng_drvdata *drvdata) { struct device *dev = &(drvdata->pdev->dev); dev_dbg(dev, "cctrng change rosc (was %d)\n", drvdata->active_rosc); drvdata->active_rosc += 1; while (drvdata->active_rosc < CC_TRNG_NUM_OF_ROSCS) { if (drvdata->smpl_ratio[drvdata->active_rosc] > 0) return 0; drvdata->active_rosc += 1; } return -EINVAL; } static void cc_trng_enable_rnd_source(struct cctrng_drvdata *drvdata) { u32 max_cycles; /* Set watchdog threshold to maximal allowed time (in CPU cycles) */ max_cycles = CCTRNG_TIMEOUT(drvdata->smpl_ratio[drvdata->active_rosc]); cc_iowrite(drvdata, CC_RNG_WATCHDOG_VAL_REG_OFFSET, max_cycles); /* enable the RND source */ cc_iowrite(drvdata, CC_RND_SOURCE_ENABLE_REG_OFFSET, 0x1); /* unmask RNG interrupts */ cc_iowrite(drvdata, CC_RNG_IMR_REG_OFFSET, (u32)~CC_RNG_INT_MASK); } /* increase circular data buffer index (head/tail) */ static inline void circ_idx_inc(int *idx, int bytes) { *idx += (bytes + 3) >> 2; *idx &= (CCTRNG_DATA_BUF_WORDS - 1); } static inline size_t circ_buf_space(struct cctrng_drvdata *drvdata) { return CIRC_SPACE(drvdata->circ.head, drvdata->circ.tail, CCTRNG_DATA_BUF_WORDS); } static int cctrng_read(struct hwrng *rng, void *data, size_t max, bool wait) { /* current implementation ignores "wait" */ struct cctrng_drvdata *drvdata = (struct cctrng_drvdata *)rng->priv; struct device *dev = &(drvdata->pdev->dev); u32 *buf = (u32 *)drvdata->circ.buf; size_t copied = 0; size_t cnt_w; size_t size; size_t left; if (!spin_trylock(&drvdata->read_lock)) { /* concurrent consumers from data_buf cannot be served */ dev_dbg_ratelimited(dev, "unable to hold lock\n"); return 0; } /* copy till end of data buffer (without wrap back) */ cnt_w = CIRC_CNT_TO_END(drvdata->circ.head, drvdata->circ.tail, CCTRNG_DATA_BUF_WORDS); size = min((cnt_w<<2), max); memcpy(data, &(buf[drvdata->circ.tail]), size); copied = size; circ_idx_inc(&drvdata->circ.tail, size); /* copy rest of data in data buffer */ left = max - copied; if (left > 0) { cnt_w = CIRC_CNT(drvdata->circ.head, drvdata->circ.tail, CCTRNG_DATA_BUF_WORDS); size = min((cnt_w<<2), left); memcpy(data, &(buf[drvdata->circ.tail]), size); copied += size; circ_idx_inc(&drvdata->circ.tail, size); } spin_unlock(&drvdata->read_lock); if (circ_buf_space(drvdata) >= CC_TRNG_EHR_IN_WORDS) { if (atomic_cmpxchg(&drvdata->pending_hw, 0, 1) == 0) { /* re-check space in buffer to avoid potential race */ if (circ_buf_space(drvdata) >= CC_TRNG_EHR_IN_WORDS) { /* increment device's usage counter */ int rc = cc_trng_pm_get(dev); if (rc) { dev_err(dev, "cc_trng_pm_get returned %x\n", rc); return rc; } /* schedule execution of deferred work handler * for filling of data buffer */ schedule_work(&drvdata->startwork); } else { atomic_set(&drvdata->pending_hw, 0); } } } return copied; } static void cc_trng_hw_trigger(struct cctrng_drvdata *drvdata) { u32 tmp_smpl_cnt = 0; struct device *dev = &(drvdata->pdev->dev); dev_dbg(dev, "cctrng hw trigger.\n"); /* enable the HW RND clock */ cc_iowrite(drvdata, CC_RNG_CLK_ENABLE_REG_OFFSET, 0x1); /* do software reset */ cc_iowrite(drvdata, CC_RNG_SW_RESET_REG_OFFSET, 0x1); /* in order to verify that the reset has completed, * the sample count need to be verified */ do { /* enable the HW RND clock */ cc_iowrite(drvdata, CC_RNG_CLK_ENABLE_REG_OFFSET, 0x1); /* set sampling ratio (rng_clocks) between consecutive bits */ cc_iowrite(drvdata, CC_SAMPLE_CNT1_REG_OFFSET, drvdata->smpl_ratio[drvdata->active_rosc]); /* read the sampling ratio */ tmp_smpl_cnt = cc_ioread(drvdata, CC_SAMPLE_CNT1_REG_OFFSET); } while (tmp_smpl_cnt != drvdata->smpl_ratio[drvdata->active_rosc]); /* disable the RND source for setting new parameters in HW */ cc_iowrite(drvdata, CC_RND_SOURCE_ENABLE_REG_OFFSET, 0); cc_iowrite(drvdata, CC_RNG_ICR_REG_OFFSET, 0xFFFFFFFF); cc_iowrite(drvdata, CC_TRNG_CONFIG_REG_OFFSET, drvdata->active_rosc); /* Debug Control register: set to 0 - no bypasses */ cc_iowrite(drvdata, CC_TRNG_DEBUG_CONTROL_REG_OFFSET, 0); cc_trng_enable_rnd_source(drvdata); } static void cc_trng_compwork_handler(struct work_struct *w) { u32 isr = 0; u32 ehr_valid = 0; struct cctrng_drvdata *drvdata = container_of(w, struct cctrng_drvdata, compwork); struct device *dev = &(drvdata->pdev->dev); int i; /* stop DMA and the RNG source */ cc_iowrite(drvdata, CC_RNG_DMA_ENABLE_REG_OFFSET, 0); cc_iowrite(drvdata, CC_RND_SOURCE_ENABLE_REG_OFFSET, 0); /* read RNG_ISR and check for errors */ isr = cc_ioread(drvdata, CC_RNG_ISR_REG_OFFSET); ehr_valid = CC_REG_FLD_GET(RNG_ISR, EHR_VALID, isr); dev_dbg(dev, "Got RNG_ISR=0x%08X (EHR_VALID=%u)\n", isr, ehr_valid); if (fips_enabled && CC_REG_FLD_GET(RNG_ISR, CRNGT_ERR, isr)) { fips_fail_notify(); /* FIPS error is fatal */ panic("Got HW CRNGT error while fips is enabled!\n"); } /* Clear all pending RNG interrupts */ cc_iowrite(drvdata, CC_RNG_ICR_REG_OFFSET, isr); if (!ehr_valid) { /* in case of AUTOCORR/TIMEOUT error, try the next ROSC */ if (CC_REG_FLD_GET(RNG_ISR, AUTOCORR_ERR, isr) || CC_REG_FLD_GET(RNG_ISR, WATCHDOG, isr)) { dev_dbg(dev, "cctrng autocorr/timeout error.\n"); goto next_rosc; } /* in case of VN error, ignore it */ } /* read EHR data from registers */ for (i = 0; i < CC_TRNG_EHR_IN_WORDS; i++) { /* calc word ptr in data_buf */ u32 *buf = (u32 *)drvdata->circ.buf; buf[drvdata->circ.head] = cc_ioread(drvdata, CC_EHR_DATA_0_REG_OFFSET + (i*sizeof(u32))); /* EHR_DATA registers are cleared on read. In case 0 value was * returned, restart the entropy collection. */ if (buf[drvdata->circ.head] == 0) { dev_dbg(dev, "Got 0 value in EHR. active_rosc %u\n", drvdata->active_rosc); goto next_rosc; } circ_idx_inc(&drvdata->circ.head, 1<<2); } atomic_set(&drvdata->pending_hw, 0); /* continue to fill data buffer if needed */ if (circ_buf_space(drvdata) >= CC_TRNG_EHR_IN_WORDS) { if (atomic_cmpxchg(&drvdata->pending_hw, 0, 1) == 0) { /* Re-enable rnd source */ cc_trng_enable_rnd_source(drvdata); return; } } cc_trng_pm_put_suspend(dev); dev_dbg(dev, "compwork handler done\n"); return; next_rosc: if ((circ_buf_space(drvdata) >= CC_TRNG_EHR_IN_WORDS) && (cc_trng_change_rosc(drvdata) == 0)) { /* trigger trng hw with next rosc */ cc_trng_hw_trigger(drvdata); } else { atomic_set(&drvdata->pending_hw, 0); cc_trng_pm_put_suspend(dev); } } static irqreturn_t cc_isr(int irq, void *dev_id) { struct cctrng_drvdata *drvdata = (struct cctrng_drvdata *)dev_id; struct device *dev = &(drvdata->pdev->dev); u32 irr; /* if driver suspended return, probably shared interrupt */ if (pm_runtime_suspended(dev)) return IRQ_NONE; /* read the interrupt status */ irr = cc_ioread(drvdata, CC_HOST_RGF_IRR_REG_OFFSET); dev_dbg(dev, "Got IRR=0x%08X\n", irr); if (irr == 0) /* Probably shared interrupt line */ return IRQ_NONE; /* clear interrupt - must be before processing events */ cc_iowrite(drvdata, CC_HOST_RGF_ICR_REG_OFFSET, irr); /* RNG interrupt - most probable */ if (irr & CC_HOST_RNG_IRQ_MASK) { /* Mask RNG interrupts - will be unmasked in deferred work */ cc_iowrite(drvdata, CC_RNG_IMR_REG_OFFSET, 0xFFFFFFFF); /* We clear RNG interrupt here, * to avoid it from firing as we'll unmask RNG interrupts. */ cc_iowrite(drvdata, CC_HOST_RGF_ICR_REG_OFFSET, CC_HOST_RNG_IRQ_MASK); irr &= ~CC_HOST_RNG_IRQ_MASK; /* schedule execution of deferred work handler */ schedule_work(&drvdata->compwork); } if (irr) { dev_dbg_ratelimited(dev, "IRR includes unknown cause bits (0x%08X)\n", irr); /* Just warning */ } return IRQ_HANDLED; } static void cc_trng_startwork_handler(struct work_struct *w) { struct cctrng_drvdata *drvdata = container_of(w, struct cctrng_drvdata, startwork); drvdata->active_rosc = 0; cc_trng_hw_trigger(drvdata); } static int cc_trng_clk_init(struct cctrng_drvdata *drvdata) { struct clk *clk; struct device *dev = &(drvdata->pdev->dev); int rc = 0; clk = devm_clk_get_optional(dev, NULL); if (IS_ERR(clk)) { if (PTR_ERR(clk) != -EPROBE_DEFER) dev_err(dev, "Error getting clock: %pe\n", clk); return PTR_ERR(clk); } drvdata->clk = clk; rc = clk_prepare_enable(drvdata->clk); if (rc) { dev_err(dev, "Failed to enable clock\n"); return rc; } return 0; } static void cc_trng_clk_fini(struct cctrng_drvdata *drvdata) { clk_disable_unprepare(drvdata->clk); } static int cctrng_probe(struct platform_device *pdev) { struct resource *req_mem_cc_regs = NULL; struct cctrng_drvdata *drvdata; struct device *dev = &pdev->dev; int rc = 0; u32 val; int irq; drvdata = devm_kzalloc(dev, sizeof(*drvdata), GFP_KERNEL); if (!drvdata) return -ENOMEM; drvdata->rng.name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL); if (!drvdata->rng.name) return -ENOMEM; drvdata->rng.read = cctrng_read; drvdata->rng.priv = (unsigned long)drvdata; drvdata->rng.quality = CC_TRNG_QUALITY; platform_set_drvdata(pdev, drvdata); drvdata->pdev = pdev; drvdata->circ.buf = (char *)drvdata->data_buf; /* Get device resources */ /* First CC registers space */ req_mem_cc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); /* Map registers space */ drvdata->cc_base = devm_ioremap_resource(dev, req_mem_cc_regs); if (IS_ERR(drvdata->cc_base)) { dev_err(dev, "Failed to ioremap registers"); return PTR_ERR(drvdata->cc_base); } dev_dbg(dev, "Got MEM resource (%s): %pR\n", req_mem_cc_regs->name, req_mem_cc_regs); dev_dbg(dev, "CC registers mapped from %pa to 0x%p\n", &req_mem_cc_regs->start, drvdata->cc_base); /* Then IRQ */ irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(dev, "Failed getting IRQ resource\n"); return irq; } /* parse sampling rate from device tree */ rc = cc_trng_parse_sampling_ratio(drvdata); if (rc) { dev_err(dev, "Failed to get legal sampling ratio for rosc\n"); return rc; } rc = cc_trng_clk_init(drvdata); if (rc) { dev_err(dev, "cc_trng_clk_init failed\n"); return rc; } INIT_WORK(&drvdata->compwork, cc_trng_compwork_handler); INIT_WORK(&drvdata->startwork, cc_trng_startwork_handler); spin_lock_init(&drvdata->read_lock); /* register the driver isr function */ rc = devm_request_irq(dev, irq, cc_isr, IRQF_SHARED, "cctrng", drvdata); if (rc) { dev_err(dev, "Could not register to interrupt %d\n", irq); goto post_clk_err; } dev_dbg(dev, "Registered to IRQ: %d\n", irq); /* Clear all pending interrupts */ val = cc_ioread(drvdata, CC_HOST_RGF_IRR_REG_OFFSET); dev_dbg(dev, "IRR=0x%08X\n", val); cc_iowrite(drvdata, CC_HOST_RGF_ICR_REG_OFFSET, val); /* unmask HOST RNG interrupt */ cc_iowrite(drvdata, CC_HOST_RGF_IMR_REG_OFFSET, cc_ioread(drvdata, CC_HOST_RGF_IMR_REG_OFFSET) & ~CC_HOST_RNG_IRQ_MASK); /* init PM */ rc = cc_trng_pm_init(drvdata); if (rc) { dev_err(dev, "cc_trng_pm_init failed\n"); goto post_clk_err; } /* increment device's usage counter */ rc = cc_trng_pm_get(dev); if (rc) { dev_err(dev, "cc_trng_pm_get returned %x\n", rc); goto post_pm_err; } /* set pending_hw to verify that HW won't be triggered from read */ atomic_set(&drvdata->pending_hw, 1); /* registration of the hwrng device */ rc = hwrng_register(&drvdata->rng); if (rc) { dev_err(dev, "Could not register hwrng device.\n"); goto post_pm_err; } /* trigger HW to start generate data */ drvdata->active_rosc = 0; cc_trng_hw_trigger(drvdata); /* All set, we can allow auto-suspend */ cc_trng_pm_go(drvdata); dev_info(dev, "ARM cctrng device initialized\n"); return 0; post_pm_err: cc_trng_pm_fini(drvdata); post_clk_err: cc_trng_clk_fini(drvdata); return rc; } static int cctrng_remove(struct platform_device *pdev) { struct cctrng_drvdata *drvdata = platform_get_drvdata(pdev); struct device *dev = &pdev->dev; dev_dbg(dev, "Releasing cctrng resources...\n"); hwrng_unregister(&drvdata->rng); cc_trng_pm_fini(drvdata); cc_trng_clk_fini(drvdata); dev_info(dev, "ARM cctrng device terminated\n"); return 0; } static int __maybe_unused cctrng_suspend(struct device *dev) { struct cctrng_drvdata *drvdata = dev_get_drvdata(dev); dev_dbg(dev, "set HOST_POWER_DOWN_EN\n"); cc_iowrite(drvdata, CC_HOST_POWER_DOWN_EN_REG_OFFSET, POWER_DOWN_ENABLE); clk_disable_unprepare(drvdata->clk); return 0; } static bool cctrng_wait_for_reset_completion(struct cctrng_drvdata *drvdata) { unsigned int val; unsigned int i; for (i = 0; i < CC_HW_RESET_LOOP_COUNT; i++) { /* in cc7x3 NVM_IS_IDLE indicates that CC reset is * completed and device is fully functional */ val = cc_ioread(drvdata, CC_NVM_IS_IDLE_REG_OFFSET); if (val & BIT(CC_NVM_IS_IDLE_VALUE_BIT_SHIFT)) { /* hw indicate reset completed */ return true; } /* allow scheduling other process on the processor */ schedule(); } /* reset not completed */ return false; } static int __maybe_unused cctrng_resume(struct device *dev) { struct cctrng_drvdata *drvdata = dev_get_drvdata(dev); int rc; dev_dbg(dev, "unset HOST_POWER_DOWN_EN\n"); /* Enables the device source clk */ rc = clk_prepare_enable(drvdata->clk); if (rc) { dev_err(dev, "failed getting clock back on. We're toast.\n"); return rc; } /* wait for Cryptocell reset completion */ if (!cctrng_wait_for_reset_completion(drvdata)) { dev_err(dev, "Cryptocell reset not completed"); return -EBUSY; } /* unmask HOST RNG interrupt */ cc_iowrite(drvdata, CC_HOST_RGF_IMR_REG_OFFSET, cc_ioread(drvdata, CC_HOST_RGF_IMR_REG_OFFSET) & ~CC_HOST_RNG_IRQ_MASK); cc_iowrite(drvdata, CC_HOST_POWER_DOWN_EN_REG_OFFSET, POWER_DOWN_DISABLE); return 0; } static UNIVERSAL_DEV_PM_OPS(cctrng_pm, cctrng_suspend, cctrng_resume, NULL); static const struct of_device_id arm_cctrng_dt_match[] = { { .compatible = "arm,cryptocell-713-trng", }, { .compatible = "arm,cryptocell-703-trng", }, {}, }; MODULE_DEVICE_TABLE(of, arm_cctrng_dt_match); static struct platform_driver cctrng_driver = { .driver = { .name = "cctrng", .of_match_table = arm_cctrng_dt_match, .pm = &cctrng_pm, }, .probe = cctrng_probe, .remove = cctrng_remove, }; static int __init cctrng_mod_init(void) { /* Compile time assertion checks */ BUILD_BUG_ON(CCTRNG_DATA_BUF_WORDS < 6); BUILD_BUG_ON((CCTRNG_DATA_BUF_WORDS & (CCTRNG_DATA_BUF_WORDS-1)) != 0); return platform_driver_register(&cctrng_driver); } module_init(cctrng_mod_init); static void __exit cctrng_mod_exit(void) { platform_driver_unregister(&cctrng_driver); } module_exit(cctrng_mod_exit); /* Module description */ MODULE_DESCRIPTION("ARM CryptoCell TRNG Driver"); MODULE_AUTHOR("ARM"); MODULE_LICENSE("GPL v2");