/* * linux/drivers/char/vt_ioctl.c * * Copyright (C) 1992 obz under the linux copyright * * Dynamic diacritical handling - aeb@cwi.nl - Dec 1993 * Dynamic keymap and string allocation - aeb@cwi.nl - May 1994 * Restrict VT switching via ioctl() - grif@cs.ucr.edu - Dec 1995 * Some code moved for less code duplication - Andi Kleen - Mar 1997 * Check put/get_user, cleanups - acme@conectiva.com.br - Jun 2001 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include char vt_dont_switch; extern struct tty_driver *console_driver; #define VT_IS_IN_USE(i) (console_driver->ttys[i] && console_driver->ttys[i]->count) #define VT_BUSY(i) (VT_IS_IN_USE(i) || i == fg_console || vc_cons[i].d == sel_cons) /* * Console (vt and kd) routines, as defined by USL SVR4 manual, and by * experimentation and study of X386 SYSV handling. * * One point of difference: SYSV vt's are /dev/vtX, which X >= 0, and * /dev/console is a separate ttyp. Under Linux, /dev/tty0 is /dev/console, * and the vc start at /dev/ttyX, X >= 1. We maintain that here, so we will * always treat our set of vt as numbered 1..MAX_NR_CONSOLES (corresponding to * ttys 0..MAX_NR_CONSOLES-1). Explicitly naming VT 0 is illegal, but using * /dev/tty0 (fg_console) as a target is legal, since an implicit aliasing * to the current console is done by the main ioctl code. */ #ifdef CONFIG_X86 #include #endif static void complete_change_console(struct vc_data *vc); /* * these are the valid i/o ports we're allowed to change. they map all the * video ports */ #define GPFIRST 0x3b4 #define GPLAST 0x3df #define GPNUM (GPLAST - GPFIRST + 1) #define i (tmp.kb_index) #define s (tmp.kb_table) #define v (tmp.kb_value) static inline int do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm, struct kbd_struct *kbd) { struct kbentry tmp; ushort *key_map, val, ov; if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry))) return -EFAULT; if (!capable(CAP_SYS_TTY_CONFIG)) perm = 0; switch (cmd) { case KDGKBENT: key_map = key_maps[s]; if (key_map) { val = U(key_map[i]); if (kbd->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES) val = K_HOLE; } else val = (i ? K_HOLE : K_NOSUCHMAP); return put_user(val, &user_kbe->kb_value); case KDSKBENT: if (!perm) return -EPERM; if (!i && v == K_NOSUCHMAP) { /* deallocate map */ key_map = key_maps[s]; if (s && key_map) { key_maps[s] = NULL; if (key_map[0] == U(K_ALLOCATED)) { kfree(key_map); keymap_count--; } } break; } if (KTYP(v) < NR_TYPES) { if (KVAL(v) > max_vals[KTYP(v)]) return -EINVAL; } else if (kbd->kbdmode != VC_UNICODE) return -EINVAL; /* ++Geert: non-PC keyboards may generate keycode zero */ #if !defined(__mc68000__) && !defined(__powerpc__) /* assignment to entry 0 only tests validity of args */ if (!i) break; #endif if (!(key_map = key_maps[s])) { int j; if (keymap_count >= MAX_NR_OF_USER_KEYMAPS && !capable(CAP_SYS_RESOURCE)) return -EPERM; key_map = kmalloc(sizeof(plain_map), GFP_KERNEL); if (!key_map) return -ENOMEM; key_maps[s] = key_map; key_map[0] = U(K_ALLOCATED); for (j = 1; j < NR_KEYS; j++) key_map[j] = U(K_HOLE); keymap_count++; } ov = U(key_map[i]); if (v == ov) break; /* nothing to do */ /* * Attention Key. */ if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) return -EPERM; key_map[i] = U(v); if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT)) compute_shiftstate(); break; } return 0; } #undef i #undef s #undef v static inline int do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc, int perm) { struct kbkeycode tmp; int kc = 0; if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode))) return -EFAULT; switch (cmd) { case KDGETKEYCODE: kc = getkeycode(tmp.scancode); if (kc >= 0) kc = put_user(kc, &user_kbkc->keycode); break; case KDSETKEYCODE: if (!perm) return -EPERM; kc = setkeycode(tmp.scancode, tmp.keycode); break; } return kc; } static inline int do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm) { struct kbsentry *kbs; char *p; u_char *q; u_char __user *up; int sz; int delta; char *first_free, *fj, *fnw; int i, j, k; int ret; if (!capable(CAP_SYS_TTY_CONFIG)) perm = 0; kbs = kmalloc(sizeof(*kbs), GFP_KERNEL); if (!kbs) { ret = -ENOMEM; goto reterr; } /* we mostly copy too much here (512bytes), but who cares ;) */ if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) { ret = -EFAULT; goto reterr; } kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0'; i = kbs->kb_func; switch (cmd) { case KDGKBSENT: sz = sizeof(kbs->kb_string) - 1; /* sz should have been a struct member */ up = user_kdgkb->kb_string; p = func_table[i]; if(p) for ( ; *p && sz; p++, sz--) if (put_user(*p, up++)) { ret = -EFAULT; goto reterr; } if (put_user('\0', up)) { ret = -EFAULT; goto reterr; } kfree(kbs); return ((p && *p) ? -EOVERFLOW : 0); case KDSKBSENT: if (!perm) { ret = -EPERM; goto reterr; } q = func_table[i]; first_free = funcbufptr + (funcbufsize - funcbufleft); for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++) ; if (j < MAX_NR_FUNC) fj = func_table[j]; else fj = first_free; delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string); if (delta <= funcbufleft) { /* it fits in current buf */ if (j < MAX_NR_FUNC) { memmove(fj + delta, fj, first_free - fj); for (k = j; k < MAX_NR_FUNC; k++) if (func_table[k]) func_table[k] += delta; } if (!q) func_table[i] = fj; funcbufleft -= delta; } else { /* allocate a larger buffer */ sz = 256; while (sz < funcbufsize - funcbufleft + delta) sz <<= 1; fnw = kmalloc(sz, GFP_KERNEL); if(!fnw) { ret = -ENOMEM; goto reterr; } if (!q) func_table[i] = fj; if (fj > funcbufptr) memmove(fnw, funcbufptr, fj - funcbufptr); for (k = 0; k < j; k++) if (func_table[k]) func_table[k] = fnw + (func_table[k] - funcbufptr); if (first_free > fj) { memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj); for (k = j; k < MAX_NR_FUNC; k++) if (func_table[k]) func_table[k] = fnw + (func_table[k] - funcbufptr) + delta; } if (funcbufptr != func_buf) kfree(funcbufptr); funcbufptr = fnw; funcbufleft = funcbufleft - delta + sz - funcbufsize; funcbufsize = sz; } strcpy(func_table[i], kbs->kb_string); break; } ret = 0; reterr: kfree(kbs); return ret; } static inline int do_fontx_ioctl(int cmd, struct consolefontdesc __user *user_cfd, int perm, struct console_font_op *op) { struct consolefontdesc cfdarg; int i; if (copy_from_user(&cfdarg, user_cfd, sizeof(struct consolefontdesc))) return -EFAULT; switch (cmd) { case PIO_FONTX: if (!perm) return -EPERM; op->op = KD_FONT_OP_SET; op->flags = KD_FONT_FLAG_OLD; op->width = 8; op->height = cfdarg.charheight; op->charcount = cfdarg.charcount; op->data = cfdarg.chardata; return con_font_op(vc_cons[fg_console].d, op); case GIO_FONTX: { op->op = KD_FONT_OP_GET; op->flags = KD_FONT_FLAG_OLD; op->width = 8; op->height = cfdarg.charheight; op->charcount = cfdarg.charcount; op->data = cfdarg.chardata; i = con_font_op(vc_cons[fg_console].d, op); if (i) return i; cfdarg.charheight = op->height; cfdarg.charcount = op->charcount; if (copy_to_user(user_cfd, &cfdarg, sizeof(struct consolefontdesc))) return -EFAULT; return 0; } } return -EINVAL; } static inline int do_unimap_ioctl(int cmd, struct unimapdesc __user *user_ud, int perm, struct vc_data *vc) { struct unimapdesc tmp; if (copy_from_user(&tmp, user_ud, sizeof tmp)) return -EFAULT; if (tmp.entries) if (!access_ok(VERIFY_WRITE, tmp.entries, tmp.entry_ct*sizeof(struct unipair))) return -EFAULT; switch (cmd) { case PIO_UNIMAP: if (!perm) return -EPERM; return con_set_unimap(vc, tmp.entry_ct, tmp.entries); case GIO_UNIMAP: if (!perm && fg_console != vc->vc_num) return -EPERM; return con_get_unimap(vc, tmp.entry_ct, &(user_ud->entry_ct), tmp.entries); } return 0; } /* * We handle the console-specific ioctl's here. We allow the * capability to modify any console, not just the fg_console. */ int vt_ioctl(struct tty_struct *tty, struct file * file, unsigned int cmd, unsigned long arg) { struct vc_data *vc = (struct vc_data *)tty->driver_data; struct console_font_op op; /* used in multiple places here */ struct kbd_struct * kbd; unsigned int console; unsigned char ucval; void __user *up = (void __user *)arg; int i, perm; console = vc->vc_num; if (!vc_cons_allocated(console)) /* impossible? */ return -ENOIOCTLCMD; /* * To have permissions to do most of the vt ioctls, we either have * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG. */ perm = 0; if (current->signal->tty == tty || capable(CAP_SYS_TTY_CONFIG)) perm = 1; kbd = kbd_table + console; switch (cmd) { case KIOCSOUND: if (!perm) return -EPERM; if (arg) arg = CLOCK_TICK_RATE / arg; kd_mksound(arg, 0); return 0; case KDMKTONE: if (!perm) return -EPERM; { unsigned int ticks, count; /* * Generate the tone for the appropriate number of ticks. * If the time is zero, turn off sound ourselves. */ ticks = HZ * ((arg >> 16) & 0xffff) / 1000; count = ticks ? (arg & 0xffff) : 0; if (count) count = CLOCK_TICK_RATE / count; kd_mksound(count, ticks); return 0; } case KDGKBTYPE: /* * this is naive. */ ucval = KB_101; goto setchar; /* * These cannot be implemented on any machine that implements * ioperm() in user level (such as Alpha PCs) or not at all. * * XXX: you should never use these, just call ioperm directly.. */ #ifdef CONFIG_X86 case KDADDIO: case KDDELIO: /* * KDADDIO and KDDELIO may be able to add ports beyond what * we reject here, but to be safe... */ if (arg < GPFIRST || arg > GPLAST) return -EINVAL; return sys_ioperm(arg, 1, (cmd == KDADDIO)) ? -ENXIO : 0; case KDENABIO: case KDDISABIO: return sys_ioperm(GPFIRST, GPNUM, (cmd == KDENABIO)) ? -ENXIO : 0; #endif /* Linux m68k/i386 interface for setting the keyboard delay/repeat rate */ case KDKBDREP: { struct kbd_repeat kbrep; int err; if (!capable(CAP_SYS_TTY_CONFIG)) return -EPERM; if (copy_from_user(&kbrep, up, sizeof(struct kbd_repeat))) return -EFAULT; err = kbd_rate(&kbrep); if (err) return err; if (copy_to_user(up, &kbrep, sizeof(struct kbd_repeat))) return -EFAULT; return 0; } case KDSETMODE: /* * currently, setting the mode from KD_TEXT to KD_GRAPHICS * doesn't do a whole lot. i'm not sure if it should do any * restoration of modes or what... * * XXX It should at least call into the driver, fbdev's definitely * need to restore their engine state. --BenH */ if (!perm) return -EPERM; switch (arg) { case KD_GRAPHICS: break; case KD_TEXT0: case KD_TEXT1: arg = KD_TEXT; case KD_TEXT: break; default: return -EINVAL; } if (vc->vc_mode == (unsigned char) arg) return 0; vc->vc_mode = (unsigned char) arg; if (console != fg_console) return 0; /* * explicitly blank/unblank the screen if switching modes */ acquire_console_sem(); if (arg == KD_TEXT) do_unblank_screen(1); else do_blank_screen(1); release_console_sem(); return 0; case KDGETMODE: ucval = vc->vc_mode; goto setint; case KDMAPDISP: case KDUNMAPDISP: /* * these work like a combination of mmap and KDENABIO. * this could be easily finished. */ return -EINVAL; case KDSKBMODE: if (!perm) return -EPERM; switch(arg) { case K_RAW: kbd->kbdmode = VC_RAW; break; case K_MEDIUMRAW: kbd->kbdmode = VC_MEDIUMRAW; break; case K_XLATE: kbd->kbdmode = VC_XLATE; compute_shiftstate(); break; case K_UNICODE: kbd->kbdmode = VC_UNICODE; compute_shiftstate(); break; default: return -EINVAL; } tty_ldisc_flush(tty); return 0; case KDGKBMODE: ucval = ((kbd->kbdmode == VC_RAW) ? K_RAW : (kbd->kbdmode == VC_MEDIUMRAW) ? K_MEDIUMRAW : (kbd->kbdmode == VC_UNICODE) ? K_UNICODE : K_XLATE); goto setint; /* this could be folded into KDSKBMODE, but for compatibility reasons it is not so easy to fold KDGKBMETA into KDGKBMODE */ case KDSKBMETA: switch(arg) { case K_METABIT: clr_vc_kbd_mode(kbd, VC_META); break; case K_ESCPREFIX: set_vc_kbd_mode(kbd, VC_META); break; default: return -EINVAL; } return 0; case KDGKBMETA: ucval = (vc_kbd_mode(kbd, VC_META) ? K_ESCPREFIX : K_METABIT); setint: return put_user(ucval, (int __user *)arg); case KDGETKEYCODE: case KDSETKEYCODE: if(!capable(CAP_SYS_TTY_CONFIG)) perm=0; return do_kbkeycode_ioctl(cmd, up, perm); case KDGKBENT: case KDSKBENT: return do_kdsk_ioctl(cmd, up, perm, kbd); case KDGKBSENT: case KDSKBSENT: return do_kdgkb_ioctl(cmd, up, perm); case KDGKBDIACR: { struct kbdiacrs __user *a = up; struct kbdiacr diacr; int i; if (put_user(accent_table_size, &a->kb_cnt)) return -EFAULT; for (i = 0; i < accent_table_size; i++) { diacr.diacr = conv_uni_to_8bit(accent_table[i].diacr); diacr.base = conv_uni_to_8bit(accent_table[i].base); diacr.result = conv_uni_to_8bit(accent_table[i].result); if (copy_to_user(a->kbdiacr + i, &diacr, sizeof(struct kbdiacr))) return -EFAULT; } return 0; } case KDGKBDIACRUC: { struct kbdiacrsuc __user *a = up; if (put_user(accent_table_size, &a->kb_cnt)) return -EFAULT; if (copy_to_user(a->kbdiacruc, accent_table, accent_table_size*sizeof(struct kbdiacruc))) return -EFAULT; return 0; } case KDSKBDIACR: { struct kbdiacrs __user *a = up; struct kbdiacr diacr; unsigned int ct; int i; if (!perm) return -EPERM; if (get_user(ct,&a->kb_cnt)) return -EFAULT; if (ct >= MAX_DIACR) return -EINVAL; accent_table_size = ct; for (i = 0; i < ct; i++) { if (copy_from_user(&diacr, a->kbdiacr + i, sizeof(struct kbdiacr))) return -EFAULT; accent_table[i].diacr = conv_8bit_to_uni(diacr.diacr); accent_table[i].base = conv_8bit_to_uni(diacr.base); accent_table[i].result = conv_8bit_to_uni(diacr.result); } return 0; } case KDSKBDIACRUC: { struct kbdiacrsuc __user *a = up; unsigned int ct; if (!perm) return -EPERM; if (get_user(ct,&a->kb_cnt)) return -EFAULT; if (ct >= MAX_DIACR) return -EINVAL; accent_table_size = ct; if (copy_from_user(accent_table, a->kbdiacruc, ct*sizeof(struct kbdiacruc))) return -EFAULT; return 0; } /* the ioctls below read/set the flags usually shown in the leds */ /* don't use them - they will go away without warning */ case KDGKBLED: ucval = kbd->ledflagstate | (kbd->default_ledflagstate << 4); goto setchar; case KDSKBLED: if (!perm) return -EPERM; if (arg & ~0x77) return -EINVAL; kbd->ledflagstate = (arg & 7); kbd->default_ledflagstate = ((arg >> 4) & 7); set_leds(); return 0; /* the ioctls below only set the lights, not the functions */ /* for those, see KDGKBLED and KDSKBLED above */ case KDGETLED: ucval = getledstate(); setchar: return put_user(ucval, (char __user *)arg); case KDSETLED: if (!perm) return -EPERM; setledstate(kbd, arg); return 0; /* * A process can indicate its willingness to accept signals * generated by pressing an appropriate key combination. * Thus, one can have a daemon that e.g. spawns a new console * upon a keypress and then changes to it. * See also the kbrequest field of inittab(5). */ case KDSIGACCEPT: { if (!perm || !capable(CAP_KILL)) return -EPERM; if (!valid_signal(arg) || arg < 1 || arg == SIGKILL) return -EINVAL; spin_lock_irq(&vt_spawn_con.lock); put_pid(vt_spawn_con.pid); vt_spawn_con.pid = get_pid(task_pid(current)); vt_spawn_con.sig = arg; spin_unlock_irq(&vt_spawn_con.lock); return 0; } case VT_SETMODE: { struct vt_mode tmp; if (!perm) return -EPERM; if (copy_from_user(&tmp, up, sizeof(struct vt_mode))) return -EFAULT; if (tmp.mode != VT_AUTO && tmp.mode != VT_PROCESS) return -EINVAL; acquire_console_sem(); vc->vt_mode = tmp; /* the frsig is ignored, so we set it to 0 */ vc->vt_mode.frsig = 0; put_pid(vc->vt_pid); vc->vt_pid = get_pid(task_pid(current)); /* no switch is required -- saw@shade.msu.ru */ vc->vt_newvt = -1; release_console_sem(); return 0; } case VT_GETMODE: { struct vt_mode tmp; int rc; acquire_console_sem(); memcpy(&tmp, &vc->vt_mode, sizeof(struct vt_mode)); release_console_sem(); rc = copy_to_user(up, &tmp, sizeof(struct vt_mode)); return rc ? -EFAULT : 0; } /* * Returns global vt state. Note that VT 0 is always open, since * it's an alias for the current VT, and people can't use it here. * We cannot return state for more than 16 VTs, since v_state is short. */ case VT_GETSTATE: { struct vt_stat __user *vtstat = up; unsigned short state, mask; if (put_user(fg_console + 1, &vtstat->v_active)) return -EFAULT; state = 1; /* /dev/tty0 is always open */ for (i = 0, mask = 2; i < MAX_NR_CONSOLES && mask; ++i, mask <<= 1) if (VT_IS_IN_USE(i)) state |= mask; return put_user(state, &vtstat->v_state); } /* * Returns the first available (non-opened) console. */ case VT_OPENQRY: for (i = 0; i < MAX_NR_CONSOLES; ++i) if (! VT_IS_IN_USE(i)) break; ucval = i < MAX_NR_CONSOLES ? (i+1) : -1; goto setint; /* * ioctl(fd, VT_ACTIVATE, num) will cause us to switch to vt # num, * with num >= 1 (switches to vt 0, our console, are not allowed, just * to preserve sanity). */ case VT_ACTIVATE: if (!perm) return -EPERM; if (arg == 0 || arg > MAX_NR_CONSOLES) return -ENXIO; arg--; acquire_console_sem(); i = vc_allocate(arg); release_console_sem(); if (i) return i; set_console(arg); return 0; /* * wait until the specified VT has been activated */ case VT_WAITACTIVE: if (!perm) return -EPERM; if (arg == 0 || arg > MAX_NR_CONSOLES) return -ENXIO; return vt_waitactive(arg-1); /* * If a vt is under process control, the kernel will not switch to it * immediately, but postpone the operation until the process calls this * ioctl, allowing the switch to complete. * * According to the X sources this is the behavior: * 0: pending switch-from not OK * 1: pending switch-from OK * 2: completed switch-to OK */ case VT_RELDISP: if (!perm) return -EPERM; if (vc->vt_mode.mode != VT_PROCESS) return -EINVAL; /* * Switching-from response */ acquire_console_sem(); if (vc->vt_newvt >= 0) { if (arg == 0) /* * Switch disallowed, so forget we were trying * to do it. */ vc->vt_newvt = -1; else { /* * The current vt has been released, so * complete the switch. */ int newvt; newvt = vc->vt_newvt; vc->vt_newvt = -1; i = vc_allocate(newvt); if (i) { release_console_sem(); return i; } /* * When we actually do the console switch, * make sure we are atomic with respect to * other console switches.. */ complete_change_console(vc_cons[newvt].d); } } /* * Switched-to response */ else { /* * If it's just an ACK, ignore it */ if (arg != VT_ACKACQ) { release_console_sem(); return -EINVAL; } } release_console_sem(); return 0; /* * Disallocate memory associated to VT (but leave VT1) */ case VT_DISALLOCATE: if (arg > MAX_NR_CONSOLES) return -ENXIO; if (arg == 0) { /* deallocate all unused consoles, but leave 0 */ acquire_console_sem(); for (i=1; iv_rows) || get_user(cc, &vtsizes->v_cols)) return -EFAULT; for (i = 0; i < MAX_NR_CONSOLES; i++) { vc = vc_cons[i].d; if (vc) { vc->vc_resize_user = 1; vc_lock_resize(vc_cons[i].d, cc, ll); } } return 0; } case VT_RESIZEX: { struct vt_consize __user *vtconsize = up; ushort ll,cc,vlin,clin,vcol,ccol; if (!perm) return -EPERM; if (!access_ok(VERIFY_READ, vtconsize, sizeof(struct vt_consize))) return -EFAULT; __get_user(ll, &vtconsize->v_rows); __get_user(cc, &vtconsize->v_cols); __get_user(vlin, &vtconsize->v_vlin); __get_user(clin, &vtconsize->v_clin); __get_user(vcol, &vtconsize->v_vcol); __get_user(ccol, &vtconsize->v_ccol); vlin = vlin ? vlin : vc->vc_scan_lines; if (clin) { if (ll) { if (ll != vlin/clin) return -EINVAL; /* Parameters don't add up */ } else ll = vlin/clin; } if (vcol && ccol) { if (cc) { if (cc != vcol/ccol) return -EINVAL; } else cc = vcol/ccol; } if (clin > 32) return -EINVAL; for (i = 0; i < MAX_NR_CONSOLES; i++) { if (!vc_cons[i].d) continue; acquire_console_sem(); if (vlin) vc_cons[i].d->vc_scan_lines = vlin; if (clin) vc_cons[i].d->vc_font.height = clin; vc_cons[i].d->vc_resize_user = 1; vc_resize(vc_cons[i].d, cc, ll); release_console_sem(); } return 0; } case PIO_FONT: { if (!perm) return -EPERM; op.op = KD_FONT_OP_SET; op.flags = KD_FONT_FLAG_OLD | KD_FONT_FLAG_DONT_RECALC; /* Compatibility */ op.width = 8; op.height = 0; op.charcount = 256; op.data = up; return con_font_op(vc_cons[fg_console].d, &op); } case GIO_FONT: { op.op = KD_FONT_OP_GET; op.flags = KD_FONT_FLAG_OLD; op.width = 8; op.height = 32; op.charcount = 256; op.data = up; return con_font_op(vc_cons[fg_console].d, &op); } case PIO_CMAP: if (!perm) return -EPERM; return con_set_cmap(up); case GIO_CMAP: return con_get_cmap(up); case PIO_FONTX: case GIO_FONTX: return do_fontx_ioctl(cmd, up, perm, &op); case PIO_FONTRESET: { if (!perm) return -EPERM; #ifdef BROKEN_GRAPHICS_PROGRAMS /* With BROKEN_GRAPHICS_PROGRAMS defined, the default font is not saved. */ return -ENOSYS; #else { op.op = KD_FONT_OP_SET_DEFAULT; op.data = NULL; i = con_font_op(vc_cons[fg_console].d, &op); if (i) return i; con_set_default_unimap(vc_cons[fg_console].d); return 0; } #endif } case KDFONTOP: { if (copy_from_user(&op, up, sizeof(op))) return -EFAULT; if (!perm && op.op != KD_FONT_OP_GET) return -EPERM; i = con_font_op(vc, &op); if (i) return i; if (copy_to_user(up, &op, sizeof(op))) return -EFAULT; return 0; } case PIO_SCRNMAP: if (!perm) return -EPERM; return con_set_trans_old(up); case GIO_SCRNMAP: return con_get_trans_old(up); case PIO_UNISCRNMAP: if (!perm) return -EPERM; return con_set_trans_new(up); case GIO_UNISCRNMAP: return con_get_trans_new(up); case PIO_UNIMAPCLR: { struct unimapinit ui; if (!perm) return -EPERM; i = copy_from_user(&ui, up, sizeof(struct unimapinit)); if (i) return -EFAULT; con_clear_unimap(vc, &ui); return 0; } case PIO_UNIMAP: case GIO_UNIMAP: return do_unimap_ioctl(cmd, up, perm, vc); case VT_LOCKSWITCH: if (!capable(CAP_SYS_TTY_CONFIG)) return -EPERM; vt_dont_switch = 1; return 0; case VT_UNLOCKSWITCH: if (!capable(CAP_SYS_TTY_CONFIG)) return -EPERM; vt_dont_switch = 0; return 0; case VT_GETHIFONTMASK: return put_user(vc->vc_hi_font_mask, (unsigned short __user *)arg); default: return -ENOIOCTLCMD; } } /* * Sometimes we want to wait until a particular VT has been activated. We * do it in a very simple manner. Everybody waits on a single queue and * get woken up at once. Those that are satisfied go on with their business, * while those not ready go back to sleep. Seems overkill to add a wait * to each vt just for this - usually this does nothing! */ static DECLARE_WAIT_QUEUE_HEAD(vt_activate_queue); /* * Sleeps until a vt is activated, or the task is interrupted. Returns * 0 if activation, -EINTR if interrupted by a signal handler. */ int vt_waitactive(int vt) { int retval; DECLARE_WAITQUEUE(wait, current); add_wait_queue(&vt_activate_queue, &wait); for (;;) { retval = 0; /* * Synchronize with redraw_screen(). By acquiring the console * semaphore we make sure that the console switch is completed * before we return. If we didn't wait for the semaphore, we * could return at a point where fg_console has already been * updated, but the console switch hasn't been completed. */ acquire_console_sem(); set_current_state(TASK_INTERRUPTIBLE); if (vt == fg_console) { release_console_sem(); break; } release_console_sem(); retval = -ERESTARTNOHAND; if (signal_pending(current)) break; schedule(); } remove_wait_queue(&vt_activate_queue, &wait); __set_current_state(TASK_RUNNING); return retval; } #define vt_wake_waitactive() wake_up(&vt_activate_queue) void reset_vc(struct vc_data *vc) { vc->vc_mode = KD_TEXT; kbd_table[vc->vc_num].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE; vc->vt_mode.mode = VT_AUTO; vc->vt_mode.waitv = 0; vc->vt_mode.relsig = 0; vc->vt_mode.acqsig = 0; vc->vt_mode.frsig = 0; put_pid(vc->vt_pid); vc->vt_pid = NULL; vc->vt_newvt = -1; if (!in_interrupt()) /* Via keyboard.c:SAK() - akpm */ reset_palette(vc); } void vc_SAK(struct work_struct *work) { struct vc *vc_con = container_of(work, struct vc, SAK_work); struct vc_data *vc; struct tty_struct *tty; acquire_console_sem(); vc = vc_con->d; if (vc) { tty = vc->vc_tty; /* * SAK should also work in all raw modes and reset * them properly. */ if (tty) __do_SAK(tty); reset_vc(vc); } release_console_sem(); } /* * Performs the back end of a vt switch */ static void complete_change_console(struct vc_data *vc) { unsigned char old_vc_mode; last_console = fg_console; /* * If we're switching, we could be going from KD_GRAPHICS to * KD_TEXT mode or vice versa, which means we need to blank or * unblank the screen later. */ old_vc_mode = vc_cons[fg_console].d->vc_mode; switch_screen(vc); /* * This can't appear below a successful kill_pid(). If it did, * then the *blank_screen operation could occur while X, having * received acqsig, is waking up on another processor. This * condition can lead to overlapping accesses to the VGA range * and the framebuffer (causing system lockups). * * To account for this we duplicate this code below only if the * controlling process is gone and we've called reset_vc. */ if (old_vc_mode != vc->vc_mode) { if (vc->vc_mode == KD_TEXT) do_unblank_screen(1); else do_blank_screen(1); } /* * If this new console is under process control, send it a signal * telling it that it has acquired. Also check if it has died and * clean up (similar to logic employed in change_console()) */ if (vc->vt_mode.mode == VT_PROCESS) { /* * Send the signal as privileged - kill_pid() will * tell us if the process has gone or something else * is awry */ if (kill_pid(vc->vt_pid, vc->vt_mode.acqsig, 1) != 0) { /* * The controlling process has died, so we revert back to * normal operation. In this case, we'll also change back * to KD_TEXT mode. I'm not sure if this is strictly correct * but it saves the agony when the X server dies and the screen * remains blanked due to KD_GRAPHICS! It would be nice to do * this outside of VT_PROCESS but there is no single process * to account for and tracking tty count may be undesirable. */ reset_vc(vc); if (old_vc_mode != vc->vc_mode) { if (vc->vc_mode == KD_TEXT) do_unblank_screen(1); else do_blank_screen(1); } } } /* * Wake anyone waiting for their VT to activate */ vt_wake_waitactive(); return; } /* * Performs the front-end of a vt switch */ void change_console(struct vc_data *new_vc) { struct vc_data *vc; if (!new_vc || new_vc->vc_num == fg_console || vt_dont_switch) return; /* * If this vt is in process mode, then we need to handshake with * that process before switching. Essentially, we store where that * vt wants to switch to and wait for it to tell us when it's done * (via VT_RELDISP ioctl). * * We also check to see if the controlling process still exists. * If it doesn't, we reset this vt to auto mode and continue. * This is a cheap way to track process control. The worst thing * that can happen is: we send a signal to a process, it dies, and * the switch gets "lost" waiting for a response; hopefully, the * user will try again, we'll detect the process is gone (unless * the user waits just the right amount of time :-) and revert the * vt to auto control. */ vc = vc_cons[fg_console].d; if (vc->vt_mode.mode == VT_PROCESS) { /* * Send the signal as privileged - kill_pid() will * tell us if the process has gone or something else * is awry. * * We need to set vt_newvt *before* sending the signal or we * have a race. */ vc->vt_newvt = new_vc->vc_num; if (kill_pid(vc->vt_pid, vc->vt_mode.relsig, 1) == 0) { /* * It worked. Mark the vt to switch to and * return. The process needs to send us a * VT_RELDISP ioctl to complete the switch. */ return; } /* * The controlling process has died, so we revert back to * normal operation. In this case, we'll also change back * to KD_TEXT mode. I'm not sure if this is strictly correct * but it saves the agony when the X server dies and the screen * remains blanked due to KD_GRAPHICS! It would be nice to do * this outside of VT_PROCESS but there is no single process * to account for and tracking tty count may be undesirable. */ reset_vc(vc); /* * Fall through to normal (VT_AUTO) handling of the switch... */ } /* * Ignore all switches in KD_GRAPHICS+VT_AUTO mode */ if (vc->vc_mode == KD_GRAPHICS) return; complete_change_console(new_vc); }